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Conjugated unsaturated system B | =i
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%< Allylic substitution

low T U ..
CH,=CH-CHg + X, - CH>CH-CHs — addition
dark X
high T
CH,=CH-CH3 + X, » CH,=CH-CH, + HX
or >'(
low hv

conc. allylic substitution



© Allylic chlorination

0]
_/ va, 2= /Y ke

gas phase

Mechanism:

A
cl, —— 2Cls

MM g — e pa
an allylic radical > chain
N propagation
CH, SRTON

__/ + Cl-CI —— JC' + Cl+/



v Low concentration of X, is important
Cl| . + U:/ —_— /_/ >
NN SR I/ e Cl

with low [Cl,]
this step is not easy

v High T for entropic reason
lonic addition is entropically unfavorable



© Allylic bromination

O O
hv

N+ N—Br A ANBT N—H

O ROOR, CCl, S
N-bromosuccinimide succinimide

(NBS)

Mechanism:

N+ RO N+ ROH Initiation step

N+ Bre —> N+ HBr

} chain propagation
N + Br—d%r — > /\/Br + Br-

.\_//\\_/
O
This step provides
N—Br + HBr — N—H + Brp
a low conc. of Br,
O

Low solubility in CCl,



How about ionic addition?

The first step is an equilibrium

- low [Br,] favor the left-hand side
Use a nonpolar solvent (e.g. CCl,)
—>Br is solvated by Br, and forms Br;

-~
-— —
-~ -
- -
- -
N .

- _
|+ 2B, §For FBF Brs

—
—

Rate o« [Br,]°
—> slow at low [Br,]



3 1% FOHLTF &

°% The stability of allyl radical NTU & hemistry
Br
peroxide
+ NBS -
A 80%

Why is allylic position so special?

% Allylic radical is stabilized by conjugation (+ %)
with adjacent double bond

. P
¥

Iti,, ﬂ@\\\ AN
A v~~~ sp” for & bonding

!
~L
eclipsed - = type bonding occurs

;
—
—



MO view
A

E

55 JPCEET SN T3 84\8 antibonding
4 —

‘L----‘ég T H nonbonding
7 7'[2 v

+ + K
R
AEL T 8%\8 bonding
T

Conjugation resulted in extra stabilization (2 x AE)

N —— This radical is isolated, not conjugated



Valence bond view:
the allylic radical is resonance stabilized

7 electrons are delocalized
resonance structures Ogeréhaeﬁ Cahrbons
(not equilibrium) (bonded by three atoms

Instead of two)
- The gained delocalization E
IS also called resonance E

% Relative stability of radicals:

: 0 0 o .
allylic>3">2">1">vinyl | \%



© Rules for resonance

v'Individual resonance structure does not represent the
real structure
v'The difference is the arrangement of electrons

+ +
CH3CH-CH=CH, CHj,-CH,-CH=CHj;
these two are not resonance structures

v'Should be correct Lewis structure

A L
H-C-O-H <%= H-C“O-H
| L
H H

"\ Incorrect Lewis structure
v'Same number of unpaired electrons

/\%/'\



v'Delocalized orbitals must have maximum overlap

P sp°

\ } N\ /‘
Iy, ﬂQ}\\QD\\\\ I1y,, ﬂ@\\ g I
v~~~ sp” for ¢ bonding ©, pooroveriap

v'Resonance structures with equal E = more stabilization
2N TN

equal energy

v'More stable resonance structure
-=> higher contribution to the real structure

H3CW HSC%
> 0
CH, CHs - more stable (also 3°)
A B
real structure: HiC 8 a B has higher contribution
1" "5, > more B like

CH3 —> higher partial positive charge at C(1)
- C(2)-C(3) has more DB character
-> shorter



v'"More covalent bond - more stable (more contribution)

.. +

more stable
(more covalent bond)
more stable than T
a conjugated diene an isolated diene

v Fulfill octect rule = more stable

+{ . ™
H2C_O_CH3 < > H2C:O_CH3
* [ BN ) [ BN )
does not .. ; more stable

fulfill octect rule

[ B ) —|—
>LBr: -~ >:Br: “«----- more stable



v'Charge separation - decreases stability

.. +
}‘\ o0 o0 . .
H2C:C5\C|: -~ H2C_C—S:.|.
H L) H
more stable with charge separation

- |lower contribution



© Some common fatty acids

Qil Saturated (mol%o) Unsaturated (mol%)
Cis Cie C,s | palmitoleic | oleic | linoleic | linolenic
acid acid acid acid
Olive 0-1 | 5-15 | 14 67-84 | 8-12
Corn 1-2 | 7-11 | 34 1-2 25-35 | 50-60
Soybean | 1-2 | 6-10 | 24 20-30 | 50-58 5-10
Peanut 7-12 | 2-6 30-60 | 20-38
@) @]
MOH WOH
palmitoleic acid (Cyg) oleic acid (Cyg)
@) @)
W/\/\/\)%H N S OH

linoleic acid (Cyg) linolenic acid (Cys)



More unsaturation: more unstable

— _MOR

linoleic ester

o

O
O.
@)
y l linoleic ester
O
\/\/\(\/W/\)kOR
O. @)




3 1% FOHLTF &

NG A”y“C cation NTU & hemistry :é

Also stabilized by conjugation with adjacent double bond

MO: VB:
A /\4—

— 58
i
- Tcz H 81‘/\\8-1-
f 84%\8 resonance stabilized
I




Relative stability of carbocations:

; ) ; A A )
N > C—(|:+ > H\%ﬁ/H > C—(|3+ > C—C|Z+ > H—(|3+ > H\%Jr
C H H H H H H

allylic 30 allyl 20 10 methyl vinyl



3 1% FOHLTF &

< Alkadienes and NTU & hemistry g
polyunsaturated hydrocarbons =

CH,=CH-CH=CH, 1,3-butadiene (a conjugated diene)

(32)-1,3-pentadiene
or cis-1,3-pentadiene

(2E,4E)-2,4-hexadiene
or trans,trans-2,4-hexadiene

(2E,47)-2,4-hexadiene
or cis,trans-2,4-hexadiene

VS

pent-1-en-4-yne (an enyne)



(J (J

1,3-cyclohexadiene 1,4-cyclohexadiene
v Cumulene
H,C=C=CH, 1,2-propadiene

Il common name: allene

D/
H "‘4 ] Contains two orthogonal © systems

(no overlap, independent to each other)
They are not conjugated

H,C=C=C=CH, 1,2,3-butatriene



3 1% FOHLTF &

% 1,3-Butadiene NTU @i :7—4
v' Structure and bonding f
CH,=CH-CH=CH, . CHZ?CHZ CH3fCH3
1.?14/& 1.34 A 1.54 A
sp3-sp?

1.47 A
Sp?-sp?: more s character = shorter

Planar: to obtain conjugation of = orbitals

ook O
/
z.‘l .lzt
[
H H H H

s-trans conformation «— I —  S-Cis conformation
more stable



JE— / JE—
EA i + = + =
R N g_% antibonding |
8_8 RN T orbitals é 0 0 Jg
S T
______________ " nonbonding FOeET
,L level i 0
g_g 1_}:52 Y Jg g bonding { i % J8r 3 %
orbitals
b BEER
v VB

'7' In conjugated dienes, the & electrons are
v b /) ) delocalized over the four carbons
: (L3 1t )

- More stable



v The extra stability

AN +Hy —— > AHC = ~127 kJ/mol
XN +2H, — >~_ "o~ AH® = -254 kJ/mol doubled
XL+ 2H, —= > AH =-253 kd/mol
\/\ + 2H, —— T AH® = -239 kJ/mol
Lower than expected (-254) by 15 kJ/mol s W
—> Stabilization energy due to conjugation
- Conjugated dienes are more stable
XX *f2H, — S AH® =226 kJ/mol
It disubstituted
monosubstituted
X tH o/ S AH® = -115 kJ/mol total-
} —241 kJ/mol
XN +H  —— S AH%=-126 kd/mol

241 —226 = 15 kdJ/mol - stabilization E due to conjugation



3 1% FOHLTF &

3¢ 1,4-Addition of conjugated dienes Shenisn :.-3;

HCI AN
\/\ - \(\ n \/\/CI

25 °C Cl
78:22
Mechanism:
H+
[
H/\S}\\\SJF
H% akCr)b H/\/\/Cl
Cl
1,2-addition 1,4-addition

product product



]

HBr Br Br

| |
CHsCHCH=CH, '  CHsCH=CHCH,

40 °C
20:80
Br, E‘Br E|3r I‘Br I|3r
> +
_15°C CH,CHCH=CH, CH,CH=CHCH,
54:46
Brz Br
CHC|3 >68%

Br



v Regiochemistry?

40 °C Br . Br
> CH3CHCH=CH, CH3CH=CHCH,
HBr 20:80
/ .
N t 40°C
- 80:20
-80°C

There is an equilibrium at high temperature:

Br 40 °C, HBr Br
CH3CHCH=CH, CH3CH=CHCH,
more stable

(disubstituted)



% Kinetic vs thermodynamic control
A

Br
more stable

Kinetically: Br— attacking more positive carbon is faster
- at lower T, the rxn is irreversible

-> product is determined by rate

-> kinetic control

Thermodynamically: 1,4-addition product is more stable
—>at higher T, the rxn is reversible

- product is determined by stability

-> thermodynamic control




3 1% FOHLTF &

#¢ Diels-Alder reaction NTU & hemistry

A [4+2] cycloaddition reaction (& it 4c = & &)
1928 by Diels and Alder - 1950 Nobel prize

Basic pattern:

(k/ s ()

a diene a dienophile cyclohexene

] O O




v' The mechanism: a concerted (¥ ¢ ;) process

p— ——

<

—

4

82 bond formation and

bond breaking occur to
the same extent

formation of o bond
head-to head overlap



v’ Stereochemistry
Stereospecifically syn addition to dienophile

COzMe
OO X
OMe
A CO,Me

Q2 :

dimethyl maleate , y _
| cis relationship
cis IS retained

O

~ MeO O:COZMe
+ _—
( OMe CO,Me
0

dimethyl fumarate
trans

trans



v Reactive conformation of diene
= S-CIS form

- _
~ =

S-CIS s-trans
reactive unreactive

%8 formation of a

difficult to reach  trans-cyclohexene

——

too strain




Another reason that furan is a very good diene
-> locked in an s-cis configuration

Cyclopentadiene Is also a very good diene
- In fact, it is so good that it dimerizes very easily

D D=0

dicyclopentadiene



v’ Diels-Alder reaction is a reversible reaction

high T
1D - 2[)

v Energetics

LR

break 3 &

form 2c+1mn

—> usually exothermic

-> the right-hand side is preferred




v Follows endo selectivity

< I
- — 4 preferred
= é - @D

endo-approach

o — O
/~ i

exo-approach



*Definition of endo and exo

Substituent on a bridge of a bicyclic structure:
the group orientated towards the highest numbered bridge
- endo

the group orientated towards the lowest numbered bridge
> exo

€X0-__endo
exo
exo .,
endo
endo

same side as this bridge (’ =

r H
—> endo < H X exo hydrogens
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