NTU Chzmnny

1% ¥ %ffa%?%‘g;

\:’ /?f‘ %‘3 PH '};;C pﬁtﬁi

@@@ [~% IF“ﬁE ¥ o l‘t"ﬁ F R ERP R T F\); v L1 CC A OpenCourselare
@ CEGET ER Y a2 N A3 3.0 S s s ] é}%kﬁﬁmiﬁ%ﬁﬂ



http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�
http://creativecommons.org/licenses/by-sa/3.0/tw/�

Chapter 6 -1 i"?m"g £
lonic reactions of alkyl halides
< Alkyl halides R-X

v Classification
CH;X RCH,X RR'CHX RR'R"CX

methyl 1° 29 3°
halides
v' Some physical properties

Me-F Me-Cl Me-Br Me-|

1.39 A 1.78 1.93 2.14
472 kJ/mol 350 293 239
Water insoluble, good organic solvents
CH,CI, CHCl, CCl,
dichloromethane chloroform carbon tetrachloride

L carcinogenic !



3 1% FOHLTF &

’% Nucleophilic substitution reactions Y1, & Remisras
HAL B F

[ leaving group
Nu- + R-X =2 R-Nu + X~

nucleophile substrate product halide
lon
heterolysis
OCCUrs

%l  HO: + CHsCl & CH,OH + CI-



© Nucleophiles:
any molecule that has an unshared electron pair
(not necessarily charged)

> + _
! H-O:  + (CHg)C-Cl ——=  (CHg)C-O-H ¥ Cl
H H

T an alkyloxonium ion

nucleophile H,0/'

(CH3);C—O—H + H30" + CI’

hydronium
ion



© Substrates: electrophiles

\&" &
.C—X
\\‘/ \\

\

' electrophilic

© Leaving groups:
leave as a relatively stable, weakly basic molecule
or anion

Two types:
Nu: + R—LVG

Nu—R + LVG

+
Nu: + R—LVG — Nu—R + LVG



3 1% FOHLTF &

% S,2 reaction mechanism NTU @Aeniein) =

gl 60 °C

Hic—Cl  + OH HeC-OH + CI
H,0

\

Rate oc [CH,CI|[OH]

Rate = k [CH;CI]|[OH]

rate constant

A second order reaction or bimolecular reaction
—> Likely involve the collision of CH,Cl and OH-

S.2
N )
"~ bimolecular

substitution —T nucleophilic



£ 8 IFHLT R

. . . NTU & hemistr) é

Y Orientation: backside attack =

transition state
8 S )

NU: Sc-lve — NUGDCCDLVG — Nu—c\’ + TLVG
bond partially ) \bond partially ~ configuration is
formed - broken inverted

A concerted process:
bond breaking and bond formation
occur at the same time

MO view: 4 <

E — o PC— 1O <& 60 o0
antibonding

v

%—‘—c o G — Oa O

bonding
Nucleophile (electron rich) prefers to react with empty o orbital

N



% % Using arrows to represent electron flow %

o 6 \s & S _
Nu:™ \/C—LVG — Nu --- (|3-—— LVG | — Nu—C\/ + LVG
Energy profile: c A 5 \F &

transition state

Nu: + R-X
reactants AGP

Nu-R + X~
products

reaction coordinate



T EIHLTFR

D Stereochemlstry _of Sn2 reactions: Ny & hemisray é
inversion o
Evidence:

Cl Sn2 HsC H

HsC
. <X <X
N “ >
CIS -OH~ trans

\j

@ Known: H13Cs H13C6
- _Br OH
Has A H 25
o] = -34.25° [a] = -9.90°
CH3 CH3
(R)-(-)-2-bromooctane (R)-(-)-2-octanol
Experiment: H12Co H1sCo
<~ _Br HO._ =
H\( NaOH \rH
CHs CH;
[0]% = ~34.25° [02 = +9.90°

Complete inversion



3 1% FOHLTF &

3% Substrate: good or bad? (Sy2) NTU @ hemistry | ___é

Relative rate of S,2 reactions:

CH,X CH,CH,X (CH,),CHX (CH,),CX

30 1
Steric effect:
H
Nu ‘—H>\/C—X
H
(';3(:;
Nu:™ —e HSC\’C

0.02 ~0

large group blocked the path of nucleophile

(I—T3Q (|:|\3C;

Hal® _ @3C<~
Nu;_—>\/C—X Nu: — /C_X
H H

The steric hindrance is very high for
tertiary halides



(CH;,);,CCH.X = %X relative rate: 0.00001

Neopentyl halide: also very hindered

S\ 2 reactivity:

Methyl > 1° > 2¢ > 30



B I HLTF £

) Nucleophiles: strong or weak? NTU & hemistay

Stronger nucleophile reacts faster

<1> Charged stronger than neutral (same atom)

fast

CH3O™ + CHjl ~ CH3OCHz + I

slow + _

CH3OH + CHsl - CH3C|)CH3 + 1
H

CH,O > CH,OH OH > H,0

Same nucleophilic atom:
——=  Nucleophilicity parallels basicity

RO >HO >>RCOO >ROH>H,0

r



<2> In the same group: Size 1 Nucleophilicity 1

">Br >CI'>F (&4 34 F)

RS > RO
Reasons:
| size? solvation|
nucleophile & # % % #Lsolventsng &

Solvation: % @&

IO

Il sizet polarizability?

ability to donate e~ 1



% Solvent effects (S\2) 518 IFUT &

NTU & hemistry

© Polar protic solvents
H,O, CH,CH,OH,

T

hydrogen attached to a highly
electronegative atom

solvate nucleophiles strongly: or  hucleophilicity
I
E Y. decreases

RO-H Nu:"H-OR

A

OR
Relative nucleophilicity in protic solvent:

HS > CN>1>OH >N, >Br >CH,CO, >CI">F >H,0

L weak solvation



© Polar aprotic solvents

@)
HJKN/CHQ, Q
' HaC~ > CH
CH3 3 3
N,N-dimethylformamide dimethyl sulfoxide
(DMF) (DMSO)

Solvate cations but not anions

\S/
[ /
\ Q e
/S\\O/,/ E \\\\\ O
" Na*, Nu:~
/ O \
/S\
InDMSO: F >CI >Br >1|

most basic

Q
(H3C)2N—P=N(CHa)>
N(CHj3)

hexamethylphosphoramide
(HMPA)

— haked
(not solvated)
very reactive



© Nonpolar solvents

Not important due to solubility problem
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% S, 1 reaction mechanism NTU & hemistry

/]}IJ _ acetone ~
(CH3)3C'CI + OH o > (CH3)3C'OH + Cl
H>

Rate o« [t-BuCl]
Rate = k [t-BuCl]

A first order reaction: unimolecular
Rate has nothing to do with nucleophile

T

unimolecular



© Mechanism of S,1 reaction: A stepwise process

Step 1
CH3 CHa
HyC—C<Cl HaC—C+ + Cl” slow
CHs CH3_ 1. Only bond breaking
a carbocation 2. Formation of a high
highly reactive intermediate energy species
3. Charge separation
Step 2
CI:HB ?H3
HaC—C+ +  TOH == HsC—C-OH fast
CH;\\\\,//// CHg

1. Only bond forming
2. Charge combination

The slowest step Is the rate determining step (RDS)
The rate is only dependent on t-butyl chloride



© Energy profile of Sy1 reaction

CHs;

| o
\ TS: HiC—C

Cl

5

‘BuCl + "OH

‘BUOH + CI

Intermediate
not transition state



3 1% FOHLTF &

% Carbocations NTU & hemista) 3
© Structure 0
S/}'CJ’\—R trigonal planar
4 \\ Sp2

empty p orbital <— Better than using sp? orbital
Has less s character
Less electronegativity
More s used in bonding
Compare with: tetrahedral structure

sp3 used in bonding R "R

—+
o ec) =— Not as good
- A

A
R / as above

empty sp°



© Relative stability

R R 3 3
R—(|3+ > R—C+ > R—C|3+ > H—C|:+
|
R H H H
30 p° e methyl
most stable least stable
Reason:

Alkyl groups are considered as weak electron donating
- More R groups, more stabilization



Why is alkyl group electron donating?

| | MO
Hyperconjugation:
% [ wype interaction S T—p

.C—C™—R |

’ I/
\ /7
\\/ b} )/ K
( ) // !
| iL /
~ - ’
~<. ’
S~ ’
~~. ’

Weak n-type interaction between the filled o
orbital with the empty p orbital
(as if donating e from filled o to empty p)

Valence bond view:

+
0y A s

R
]



%@L%%%ﬁ,bi
*%¢ Substrate: good or bad? (S\1) NTU @ hemistry L 2

Relative rate for Sy 1:
30 > 20> 1° > Methyl
Parallel carbocation stablity
But why?
Recall the rate determining step:
R-X 2> R" + X
Wrong reason:
More stable carbocation == Faster reaction

% Rate depends on activation energy, not product stability
To estimate E_, we need to know the TS energy



© How to estimate transition state energy?

Hammond-Leffler postulate:

For a highly endothermic reaction For a highly exothermic reaction
TS structure mimics the product TS structure mlmlcs the reactant

__________________________________________________________________

product reactant

reactant product

Now for an highly endothermic reaction, we can use the
product stability to estimate transition state energy



The rate determining step of Sy 1:

R-X = R" + X highly endothermic

More stable carbocation

—= More stable TS
(TS has very high carbocation character)

— Smaller E,

—= [Faster reaction

Relative rate for Sy 1:
3° > 20> 1° > Methyl
Tertiary substrate reacts faster



3% Stereochemistry of Syl reactions: £ 13 LT HR
. . NTU & hemistry . =
racemization E

Experiment:
Pr Pr Pr
H,O
\/—Br > \>*OH + HO— + HBr
M%\t} acetone M%\t é%/le
one enantiomer retention inversion
(optically active) 1:1
a racemate
(optically inactive)
Reason:
go through a trigonal planar carbocation
I‘Dr Has a plane of symmetry
—~ Cc = Achiral (chirality lost)
B = Optical activity is lost

Et Me



Pr

+ T S ‘+©/\ Pro |
;g - . C . —_— \>;
HO—{' /Me H,0: 4 :OH, Mev/OH
H E Et Me Bt H
Attack of H,O: equal rate from both faces
(the two approaches are enantiomeric)

% % Important lesson:

Optically active product can not be obtained
from optically inactive starting materials

Optically active product may be obtained from
optically active starting materials



© S\1 in the presence of another chiral center
( :OHZ
HsC CHs H,o  |HsC ", diastereotopic
>©< g ) CHs // approaches

! ’

| ’
L | - /

1 ¥

I

1

|

I

:OHZ

another chiral center

No plane of symmetry for the carbocation
= The two approaches are diastereomeric

= The energy may be different
Obtain two diastereomeric products:

H CH; H ; OH

Expected to be major due to steric effect



CHs

CHj
H
AN
HsC
Br
/
CHs
H

®) @) @) O
T T e —
T mal g nu
O O O @)

C
H
C
H

)

H3C



© Solvolysis

When solvent is the nucleophile: solvolysis
Hydrolysis:
t-BuBr + H,O = t-BuOH + HBr

Methanolysis:
t-BuCl + CH,OH - t-BuOCH, + HCI



] O
%CI + HkOH — HkO/K\

Formic acid
(as solvent)

Mechanism:

+Q| slow - )Jr\ r Cr

HCI



¥ %-fwﬁi

3% Effect of nucleophile (Sy1) NTU & kemistay

Key concept:

Nucleophile not involved in RDS

No effect




3 1% FOHLTF &

% Solvent effects (Sy1) NTU & hemistny _j,

Key concept:
Charge separation is involved in RDS

Faster in polar solvent
Reasons:

*Polar solvent has higher ionizing power
(dielectric constant is high)

i % % #
TS is more stabilized through solvation, AG* lower
h b ~ R
RR//,, RIE/,, 5" 5 \:
cC—XxX — C------- X | — C+
/ / |
R i R | R

TS
has very high charge separation



FE I HLFR

. . NTU & hemistry
°% The nature of leaving group =é
S\1:
5" 5 \ B
Ne—ive — \/C ——————— VG | — c‘:+ +  LVG
S\2:

Nu: // &~ : o 4 2 i
\>C—/ItVG — RNy —@le-L(Gy| — Nu—C/ +  LVG

Key concept:

In both transition states:
negative charge developed on LVG



Better ability to stabilize negative charge
= Better LVG

7] ">Br >ClI >>F

== \Weaker base - Better LVG

Recall:
HA —— H + A~
acid base




© Some other important good leaving groups

Sulfonates

O

I
"O—S—R

Sulfates

O

“OMs

methanesulfonate
(mesylate)

p-toluenesulfonate
(tosylate)

O
~OTf

@)
trifluoromethanesulfonate \

(triflate)

A super LVG



H,O is a better LVG than OH

X~ + ROH —*—> RX + OH

But
/\ o
X~ + R—OH —— RX + Hzo
|
! I
H+T Better LVG



Common mistakes for beginners:

N Ny Nu_c’\/ v NO!

/

and ¢~ are strong bases

hydride \ —> pad LVGs
a carbanion



FE I HLFR

NY SNl VS SN2 NTU & hemistry
Ingeneral:  3° 2° 1° methyl
N N J
Sy 1 S\2 *Never Sy 2 for 3°
S\l prefers: stabilized carbocation

polar solvent

weak nucleophile

good LVG
*Stereochemistry: racemization

S\2 prefers: less steric hindrance
polar aprotic solvent
strong nucleophile (high conc. is better)
good LVG
*Stereochemistry: inversion




S\ 2 reactions are useful in functional group transformations

R'COOR

RN3
azide

\ RNH,

amine

ester R'COO™ N3~
NH3

o

RCN
nitrile

(X =

“"OH ROH

RX — o
halide or sulfonate) or OR"  RoRr
R = Me, 1°, 2°

HS
R:&9
Y RSH thiol
RSR'

thioether

alcohol

ether



| Finkelstein reaction:

RCI NaCl -
Nal
or > Rl + or  Insoluble in acetone:

acetone — )
reaction is driven to
RBr NaBr ' the right-hand side




© Vinylic and phenyl halides:
unreactive in Sy1 or S 2 reactions

3w
meA @X

vinylic halide phenyl halide

Reasons:
«Stronger bond:
carbon uses sp? orbital which has higher s character

- hard to break (bad for S 1 and S\2 )

*Backside is blocked (phenyl halide) or hindered (vinylic halide)
(bad for S\ 2)

*Vinyl carbocation and phenyl carbocation are less stable:
empty sp? orbital which has higher s character

(bad for S\1) wggl @/Q

\ empty sp?



3 1% FOHLTF &

% Elimination reactions (_5)3'—i FRE): NTU & hemistay
dehydrohalogenations
H
B ‘oc _ \ _ —
—C—C— + B —_— C—C + HB + X:
) /N

A B-elimination or 1,2-elimination reaction

] C,HsONa
CH3CHCH3 > CHZZCHCH?, + NaBr + C2H50H
B C,HsOH, 55 °C
'
CHs C,H:ONa
HBC_Cl:—Br > CH3(|::CH2 + NaBr + C2H5OH

C,H:=OH, 25 °C
CHy ™2™ CHs



© The base
v, 2ROH + 2Na

— -+
2RONa + H,*

sodium
alkoxide
(an oxidation-reduction reaction)

»]  2CH3CH,OH + 2Na

2CH3CH20Na + H2

used in excess sodium  _ NaOEt or EtONa
(as solvent) ethoxide
(|3H3 (|3H3
2 H3C_(|:_OH + 2K S 2 H3C_Cl:_OK + H2
CH; CH;
potassium _ {gLOK
tert-butoxide
v ROH + NaH RONa + H,
sodium
hydride

(a strong base)



3 1% FOHLTF &

*k The mechanism: E1 and E2 NTU @henistny __.-3;
© E2
CH3CHCH; + OEt » CH,=CHCH; + Br + EtOH
I
Br

Rate o« [CH,CHBICH,][EtO"]

Rate = k [CH;CHBrCH,][EtO]

A bimolecular elimination reaction (E2):
likely involves the collision of the two



% E2 mechanism
EtO-

\H H Ho A

Yoy 22CHs - c=C + EtOH + Br
H\\ C C\ / \

H B\ H CHg

¢ Stereochemical requirement:
antiperiplanar for C-H and C-Br

(F 7 %25)
Transition state: £ - - 7
EtO
S
H“,.\C:C\‘CHs
Partial bond breaking: C-H, C-Br TN
Partial bond formation: O-H, & B Br

The reason for the stereochemical requirement is obvious




© E1

CH
CH3 809 EtoH CHs s
H3C—C—Cl - ~ HC—C-OH * H3C—C—OEt
CHy 0% M0 CHs CHg
25 °C N o J
(83%)
Syl
CHj
£ HE=C 2-methylpropene
CHj (17%)

Rate,;, = k [t-BuCl]

elim

An unimolecular elimination process - E1



% E1 mechanism

Step 1
C|:H3I slow gHg
HaC—C—C H3C” + "CHy
CHj
Step 2
/H/\. .
H2C) ONA| < Ttalit EHZ H30
+ D . +
_C._ H.C~ > or
H3C™ + CHj EtOH 3¢ CHs E1OH,
+

The nature and concentration of the base is not
Important for E1
Stability of carbocation is important for E1



3 1% FOHLTF &

Y Substitution vs elimination NTU & hemistr) =

v' 1° halides S 2 ys E2
N

(1° carbocation is not stable: Sy 1 and E1 not possible)

In general: S,2 unless strong and hindered base is used

y  CHERH
CH3(CH2)15CH2CHzBr + CHgo »: CH3(CH2)15CH2CH20CH3

65 °C
SN2 (99%)

+ CH3(CH2)15CH:CH2
E2 (1%)

CH, JFOH
CH3(CHy)15CH,CHoBr +  HaC—C—0O - B2+ RO
3(CH3)15CH,CH; B h 40 °C (85%)
3

- Sn2 (15%)
A hindered base (bulky base)
Prefers to attack smaller H but not larger C (from backside)




v’ 20 halides
S\2 Vs E2

(2° carbocation is not stable: Sy1 and E1 not easy)

Weak base: 5,2  (¥]: RCOO")
Strong base: E2 (%]: RO

7+ NaOE ks N8 N SN

Br 55 °C OEt
Sy2 E2
21:79
@)
T J g T cH, * Br
Br H3C O T 3
@)

~100%

Recall: there are weak bases but strong nucleophiles
RS, - favor $5,2



v' 3° halides
Syl vs (E1 + E2)

(SN2 not possible for steric reason; E2 has no steric effect)

Weak base: S, 1 preffered over E1
Strong base: (E1 + E2) preferred over Sy 1

High T favors elimination
Reason: entropy is more positive for elimination (AG = AH — TAS)

EtOH
+ NaOEt *r

Br 2B OEt
Syl E2 (E1)
9:91
EtOH
+ NaOEt - 0:100
Br 55 °C
0
\N/ 80% EtOH Sl + EL
20% H,O
Cl ° 83:17

25 °C



FE I HLFR

3% Biological relevance NTU @ heniin 5
0 |
_O)H/\/S:
NH"

methionine

NH, NH,
? (? 9 « |‘) S N N¢
HO—ﬁ—O—ﬁ—O—ﬁ—O N N ——» 0 +1 0

o o o |L-O

OH OH OH OH

S-adenosylmethionine
ATP

¢ ¢ 9
less nucleophilc than N g Ho—g—o—g—o—g—o—

— N— triphosphate ion
N—CH,CH,OH (as LVG)

O | Q

> | _ S A
NH* O | NH3*

choline
OH OH OH OH
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