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2.3 Invertibility and Elementary Matrices

From matrix multiplication to matrix inverse.

Let v,x,y € R". Suppose A and B are n X n matrices.

X = Bv

Given an n X n matrix B, does there exist an » X » matrix A such
that y = v for any v € R"?

w = Bu

u=Av

Furthermore, can this matrix also satisfy that w = v for any v & R"?

o
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Definitions
An n x n matrix A is called invertible if there exists an n X n matrix B such
that AB = BA = I,,. In this case, B is called an inverse of A.

Properties:
1. For n = 1, the definition reduces to the multiplicative inverse
(ab=ba=1).

2. If B 1s an inverse of 4, then A4 1s an inverse of B, 1.e., 4 and B are
inverses to each other.

Example:
1 2 (1 2 -5 2 1 0
A‘[3 5] AB = 35”3 1T o 1 |Th
_ ! _
[ -5 2 [ -5 2 1 2] [1 0]
B_[3 —1] BA=1 3 —1”35 — 101 =1
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Definitions
An n X n matrix A is called invertible if there exists an n X n matrix B such
that AB = BA = I,,. In this case, B is called an inverse of A.

Question: Does each n X n matrix have an inverse?

Some example matrices that have no inverse:

LOEM
1 2
D A [ ! 0]

) 1 2 ab_a+20b+2d7é10
SINCC | g o || ¢ a | 0 0 0 1
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Definitions

that AB = BA = I,,. In this case, B is called an inverse of A.

An n x n matrix A is called invertible if there exists an n X n matrix B such

Property:
If 4 is an invertible matrix, then A4 has exactly one inverse (denoted 41).

Proof
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Definitions

that AB = BA = I,,. In this case, B is called an inverse of A.

An n x n matrix A is called invertible if there exists an n X n matrix B such

Property:
If 4 is an invertible matrix, then A4 has exactly one inverse (denoted 41).

Theorem 2.2

Let A and B be n X n matrices.

(a) If A is invertible, then A~ is invertible and (A~1)~! = A.

(b) If A and B are invertible, then AB is invertible and (AB)~! = B~1A~1
(c) If A is invertible, then AT is invertible and (AT)~! = (A=1)T,

Proof
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Definitions
An n X n matrix A is called invertible if there exists an n X n matrix B such
that AB = BA = I,,. In this case, B is called an inverse of A.

Property:
If 4 is an invertible matrix, then A4 has exactly one inverse (denoted 41).

Theorem 2.2

Let A and B be n X n matrices.

(a) If A is invertible, then A~ is invertible and (A~1)~! = A.

(b) If A and B are invertible, then AB is invertible and (AB)~! = B~1A~1,
(c) If A is invertible, then A” is invertible and (A?)~1 = (4=1)T.

Corollary

Let A1, Ao, ..., A be n x n invertible matrix. Then the product A; Ay --- Ay is
also invertible, and

(A1Ag - Ap) ™t = (Ap) M (Ap—1) ' (A7

Proof




Symbolically, the inverse may be used to solve matrix equations:

Ax — b r1+2x9 = 4
AN (Ax) = A7'b STt owy = T
(A"'4)x = A'b Ax=Db
I,x = A7'b
X = A_lb 1 . . 1y —5H 2 4 . —6
P R e | R

However, this method is computationally inefficient.
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Elementary Matrices

e Every elementary row operation can be performed by
matrix multiplication.

e For examples: Let A = [ Z Z ]

e ]. Multiplying row 2 of 4 by the scalar £:
a b| | a b
¢c d| | ke kd
e 2. Interchanging rows 1 and 2 of A4:
a b| | c d
c d| | a b
e 3. Adding k times row 1 to row 2:

L)Lt Wl
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Definition
An n x n matrix F is called an elementary matrix if E' can be obtained from
I, by a single elementary row operation.

1 0 0 1 0 0 1 0 0
Example: E; =0 0 1 |,F,=|0 —4 0|,E3=|0 1 0

0 1 0 0 0 1 2 0 1
Proposition

Let A be an m xn matrix, and let F¥ be an m xm elementary matrix obtained
by performing an elementary row operation on [,,. Then the product FA

can be obtained from A by performing the identical elementary row operation
on A.

(1 2 1 0 O][1 27 [1 2°
Example: A={3 4| = EA=|0 1 0|3 4|=|3
5 6 2 0 If|5 6| (7 10

Question: Is an elementary matrix always invertible?

o
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Every elementary matrix is invertible. Furthermore, the inverse of an elemen-
tary matrix is also an elementary matrix.

1 0 0 1 0 0 1 0 0
Example: 1= 0 0 1 |,Eya=|0 —4 0 |(,E3=]10 1 0
0O 1 O 0O 0 1 2 0 1
Then, )
—1
El — 3
—1
E2 — ’
Byt =

In general, if £ € R™ ™ is an elementary matrix that corresponds to some
elementary row operation, then F~! is the elementary matrix that corresponds
to the reverse elementary row operation.
Think: How do we transform a matrix 4 to its reduced row
K echelon form by multiplying it with elementary matrices? /
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Theorem 2.3

Let A be an m x n matrix with reduced row echelon form R. Then there exists
an invertible m X m matrix P such that PA = R.

Proof
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Theorem 2.3

Let A be an m x n matrix with reduced row echelon form R. Then there exists
an invertible m X m matrix P such that PA = R.

Corollary

The matrix equation Ax = b has the same solution set as Rx = c, where
[ R c ] is the reduced echelon form of [ A b }

Proof
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Theorem E.1 (Column Correspondence Theorem)

Let A = [ a; as ---a, } be an m X n matrix whose reduced row echelon
form is R = [ ry ro ---Ip } Then

(a) If a; is a linear combination of other columns of A, then r; is a linear
combination of the corresponding columns of R with the same coeflicients.

(b) If r; is a linear combination of other columns of R, then a; is a linear
combination of the corresponding columns of A with the same coefficients.

Example: "1 9 1 1 - 1

2 1 2 1 2 0 O
~1 -2 1 2 3 6 o010 o0
A= 2 4 -3 2 0 3 = 0O 0 0 1 1
-3 -6 2 0 3 9 00 0 0 O
a_ =
, =24, - r, =2r,
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Theorem E.1

Let A ::[ a; as ---a, } be an m X n matrix whose reduced row echelon
form is R = [ ry ro ---Ip } Then

(a) If a; is a linear combination of other columns of A, then r; is a linear
combination of the corresponding columns of R with the same coeflicients.

(b) If r; is a linear combination of other columns of R, then a; is a linear
combination of the corresponding columns of A with the same coefficients.

n

*Proof (a) Suppose a; = Z Cra.

k=1,k#j

You show part (b).

o
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Properties of a Matrix in Reduced Row Echelon Form (in Appendix E)

Let R be an m X n matrix in reduced row echelon form. Then the following
statements are true.

(a) A column of R is a pivot column if and only if it is nonzero and not a linear
combination of the preceding columns of R.

(b) The jth pivot column of R is e;, the jth standard vector of R™, and hence
the pivot columns of R are linearly independent.

(¢) Every column of R is a linear combination of the pivot columns of R.

_ O O O

* X X X

O O O %k X
O O O % X
O OoO= OO

-]
-)

N

pivot columns
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Example: More precisely for Property (c):

"1 0 % * 0 0 x |/ Suppose thatr,isnota pivot column of R, and
0[1 % % 0 0 = [|there are k pivot columns of R preceding it.
00 0 011 0 = \'Then r,is a linear combination of the k
0 0 0 0 0|1 = dj' : [ d th fFici
0000 0 0 o |lPrecedng pivot columns, and the coetficients

- ~ | of the linear combination are the first & entries
\/ of r;. Furthermore, the other entries of r; are

pivot columns ZLrOs.
Example:
1 2 -1| 0 ] (1 0 5 |0 ]
-1 1 -8| 1 01 -3|0
2 -1 13| -2 ' 00 011
1 -1 8 | 1 00 0|0
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Properties of R.R.E.F Matrices
+ Theorem E.1 (Correspondence Theorem)
=> (1) Pivot columns of A are linearly independent.
(2) Each non-pivot column is a linear comb. of pivot
columns.
pivot columns
Example: 1 2 -1 2 1 2 1200 -1 -5
4_ |1 -2 1236 R=00100—3
2 4 -3 2 0 3 O 001 1 2
3 -6 2.0 3 9] 0000 0 0

non-pivot columns

a, =2a,
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Theorem 2.4

The following statments are true for any matrix A.

(a) The pivot columns of A are linearly independent.

(b) Each nonpivot column of A is a linear combination of the previous pivot
columns of A, where the coefficients of the linear combination are the entries of
the corresponding column of the reduced row echelon form of A.

pivot columns

Example: 1 2 -1 2 1 2 1200 -1 -5
1 _ 0010 0 -3
A 1 =2 123 6| ,_
9 4 -3 2 0 3 0001 1 2
-3 -6 2 0 3 9 | 0000 0 0

non-pivot columns
a, =2a,
a, = -a,+a,
NS a, = -5a,-3a;1+2a,
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Theorem 2.4

The following statments are true for any matrix A.

(a) The pivot columns of A are linearly independent.

(b) Each nonpivot column of A is a linear combination of the previous pivot
columns of A, where the coefficients of the linear combination are the entries of
the corresponding column of the reduced row echelon form of A.

Proof

Suppose R 1s the r.r.e.f. of 4.

Then there exists invertible mxm matrix P such that
R=PA.

Letr, =e, r,=e¢,, ..., be pivot columns of R.
Then, a, = Pe,, a, = Pe,, ..., are also L.1.

(b) Suppose r; is a nonpivot column of R, then by property (c),
I, = C I, TCr T ..

o
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*Uniqueness of the reduced row echelon form of a matrix:

Theorem 1.4 (Introduced in Section 1.3 and partly proved in Section 1.4)

Every matrix can be transformed into one and only one in reduced echelon
form by means of a sequence of elementary row operations.

Proof Tet A e R™*™ and R be a reduced row echelon form of A.

Claim I: Contents and positions of the pivot columns of R are uniquely deter-
mined by A.

Claim II: Contents and positions of the nonpivot columns of R are uniquely
determined by A.




#Uniqueness of the reduced row echelon form of a matrix:

Theorem 1.4 (Introduced in Section 1.3 and partly proved in Section 1.4)

Every matrix can be transformed into one and only one in reduced echelon
form by means of a sequence of elementary row operations.

Pro Of Let A € R™*™ and R be a reduced row echelon form of A.

Claim I: Contents and positions of the pivot columns of R are uniquely deter-
mined by A.

Proof

By Property (a) of R and the column correspondence property, we know that
r; 1s a pivot column of R

< r;#0 and r; 1s not a l.c. of the preceding columns of R (Property a)

< a, = 0 and a, 1s not a linear combination of the preceding columns of 4.

Thus positions of the pivot columns of R are uniquely determined by positions of 4’s
nonzero columns that are not linear combinations of the preceding columns.

By the Property (b) of R, the contents of the pivot columns of R are fixed
(e, ey, ... In R").

o /




*Uniqueness of the reduced row echelon form of a matrix:

Theorem 1.4 (Introduced in Section 1.3 and partly proved in Section 1.4)

Every matrix can be transformed into one and only one in reduced echelon
form by means of a sequence of elementary row operations.

Claim II: Contents and positions of the nonpivot columns of R are uniquely
determined by A.

Proof

Suppose r, = e, ¥, = e,, ..., I, = ¢, are the pivot columns of R,

and r; 1s a non-pivot column of R.

= I,,I,, ..., I,areLL (property b) and r;= ¢r, +c,r, + --- + ¢4r, for some

Ci5 Coy ---, Cp. (prOpETLY C)
= By the column correspondence property, (actually, by Thm 2.4b)
a,,a,,..,a, are LI and

a=ca, tca, T--tga,.
Thus ¢y, ¢,, ..., ¢, are (and hence r;1s) uniquely determined by A.

o
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Homework Set for 2.3

Section 2.3: Problems 1, 3, 5,9, 11, 15,17, 19, 21, 23, 27,
29, 31, 33, 35, 37, 39, 41, 43, 45, 49, 51.




