Applications of Aqueous Equilibria

第八章 水溶液平衡的應用

Jwu-Ting Chen 陳竹亭

Department of Chemistry, National Taiwan University Taipei, Taiwan 106, <u>jtchen@ntu.edu.tw</u>

Beginning

- Most chemistry of the natural word occurs in aqueous solutions 水是自然界中生命活動的主要劇場,也是化學反應的主要舞台
- Acid-base reactions, solubility, complex ions formation often in equilibria in aqueous solutions

 酸鹼反應、溶解度、錯離子形成等都經常在水溶液中達成平衡
- Aqueous equilibria are the foundation of environmental chemistry, biochemistry, agricultural chemistry, etc.
 水溶液平衡是環境化學、生物化學、農業化學等領域的基礎
- Stability of the Chemical Species is the driving force 化學物質的穩定度是反應方向的決定因素

● Common Ion Effect 共同離子效應 HA(C_{HA})/NaA(C_{NaA})

NaA
$$\longrightarrow$$
 A' + Na'
$$C_{NaA} \quad C_{NaA}$$
HA + H₂O \longrightarrow A' + H₃O'
$$C_{HA} - x \quad C_{NaA} + x \quad x$$

If
$$C_{HA} & C_{NaA} >> x$$

Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{C_{NaA}}{C_{HA}} - acid form$$

 \bullet NH₃(C_{NH3})/NH₄Cl(C_{NH4Cl})

$$NH_{4}Cl \longrightarrow NH_{4}^{+} + Cl^{-}$$

$$C_{NH4Cl} C_{NH4Cl}$$

$$NH_{3} + H_{2}O \longrightarrow NH_{4}^{+} + OH^{-}$$

$$C_{NH3}^{-}x C_{NH4Cl}^{+}x x$$

$$If C_{NH3} & C_{NH4Cl} >> x$$

$$pOH = pK_b + log\left(\frac{[NH_4^+]}{[NH_3]}\right) = pK_b + log\left(\frac{C_{NH_4Cl}}{C_{NH_3}}\right)$$

Buffer solution 緩衝溶液

- A solution that is able to maintain an approximately constant pH 能夠維持pH值近乎不變的溶液,譬如血液
- Resist change in pH upon addition of small amount of strong acid or base, even strong ones 溶液能抵抗外加的酸或鹼,而維持其pH值幾乎不變者
- Independent of dilution 溶液雖經稀釋,卻能維持其pH值幾乎不變者

Preparation 緩衝溶液的製備

- 1 Weak acid or weak base and its corresponding salt 弱酸或弱鹼與其同離子鹽類以大致相當的莫耳 比例混合者
- 2 Strong acid (or base) with weak base (or weak acid) 強酸與弱鹼中和或強鹼與弱酸中和至莫耳比例 大致接近0.1~10者

● Exact Treatment of Buffered solutions 緩衝溶液的數學

mass balance質量平衡: $[HA]_0 + [A^-]_0 = [HA] + [A^-]...(式1)$ charge balance電荷平衡: $[H^+] + [Na^+] = [OH^-] + [A^-]...(式2)$

由式2...
$$[H^{+}] + [A^{-}]_{0} = \frac{K_{w}}{[H^{+}]} + [A^{-}]$$
$$[A^{-}] = [A^{-}]_{0} + \frac{[H^{+}]^{2} - K_{w}}{[H^{+}]}$$

代入式1...
$$[HA] = [A^{-}]_{0} + [HA]_{0} - [A^{-}]_{0} - \frac{[H^{+}]^{2} - K_{w}}{[H^{+}]}$$
$$= [HA]_{0} - \frac{[H^{+}]^{2} - K_{w}}{[H^{+}]}$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{[H^{+}]\{[A^{-}]_{0} + \frac{[H^{+}]^{2} - K_{w}}{[H^{+}]}\}}{[HA]_{0} - \frac{[H^{+}]^{2} - K_{w}}{[H^{+}]}}$$

If
$$[A^{-}]_{0} = 0$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{[H^{+}]^{2} - K_{w}}{[HA]_{0} - \frac{[H^{+}]^{2} - K_{w}}{[H^{+}]}}$$

■ Buffer Capacity 緩衝容量

■ The number of moles of strong acid or base that is required to cause a unit change in pH in 1 L buffer solution

改變1升緩衝溶液1單位的pH值時,所需要的強酸或強鹼的莫耳數

• Many factors such as temperature, ionic strength, solvent, colloidal particles might cause a shift in color range of one or more pH units.

溫度、離子強度、溶劑、膠體粒子等因素都 可能造成影響

$$[H_3O^+] = K_a \frac{C_{HA}}{C_{NaA}}$$

$$pH = pK_a + log \frac{C_{NaA}}{C_{HA}}$$

$$C_{NaOH} = \frac{m}{V}$$
 m:# of moles of NaOH

$$C_{HA} = \frac{n-m}{V}$$
 n:#of moles of HA

$$pH = pK_a + log m - log (n - m)$$

$$2.303 \frac{d(pH)}{dm} = \frac{1}{m} + \frac{1}{n-m} = \frac{n}{m(n-m)}$$

$$\frac{d^{2}(pH)}{dm^{2}} = \frac{n(2m-n)}{m^{2}(n-m)^{2}} = 0 \quad m = \frac{n}{2}$$

● How much change will occur, when 0.01 mol of H⁺ is added into 1.0 L of the following solutions?

For example: (A) 1.00 M of NaOAc and HOAc

(B) 1.00 M NaOAc and 0.100 M HOAc

(C) 1.00 M NaOAc and 0.010 M HOAc

solution
$$\left(\frac{[CH_3COO^{-}]}{[CH_3COOH]}\right)_{before}$$
 $\left(\frac{[CH_3COO^{-}]}{[CH_3COOH]}\right)_{after}$ percent changepH changeA $1.00/1.00=1.00$ $0.99/1.01=0.98$ 2.00% -0.0088 B $1.00/0.100=10.0$ $0.99/0.110=9.0$ 10.0% -0.0458 C $1.00/0.01=100.0$ $0.99/0.02=49.5$ 50.5% -0.305

The buffer effect does exist for all three solutions but the buffercarpacity drops substantially from A, B to C

● Titration 酸鹼滴定

用已知濃度的酸或鹼定量未知濃度的鹼或酸

 $egin{aligned} oldsymbol{M_1V_1=M_2V_2} & M_1 = molarity \ of the \ titrated \ substance \ M_2 = molarity \ of the \ titrated \ substance \ V_1 = volume \ of the \ titrant \ V_2 = volume \ of \ the \ titrant \end{aligned}$

計量原則:滴定達當量點時,滴定劑的莫耳數與被滴定物的 莫耳數相等

■ Titration Curve 滴定曲線

- a plot of pH versus the amount of titrant. 滴定溶液的pH 值對滴定劑的量作圖所得的曲線

● Strong Acid versus Stong Base 強鹼滴定強酸

[Example]

At 25°C, 100.00 mL 0.100 M HCl titrated with 0.100 M NaOH

- (a) What's the pH when x mL of NaOH is added?
- (b) How much NaOH is needed to make a solution with pH=3.00? pH=10.00?

在25℃ 用0.100 M NaOH溶液滴定100.00 mL 0.100 M HCl

- (a)加入x mL NaOH時溶液的pH值為何?
- (b) 需加入多少0.100 M NaOH,溶液的pH值為3.00或10.00?

- (1) 20.00 mL 0.1 M NaOH is added HCl: 100.00 mL \times 0.100 M = 10.00 mmol NaOH: 20.00 mL \times 0.100 M = 2.00 mmol $[H^+]=(10.00-2.00)$ mmol/(100.00+20.00)mL=0.067 M, pH=1.18
- (2) pH = 3.00 $NaOH: x mL \times 0.100 M = 0.100x mmol$ $[H^+] = 0.00100 M = (10.00 - 0.100x)mmol/(100.00 + x)mL$ x = 98.02 mL
- (3) pH = 10.0, pOH = 14.0 10.0 = 4.00, $[OH^{-}] = 1.00 \times 10^{-4} M$ NaOH: 0.000100 M = 0.100x mmol/(200.00 + x)mLx = 0.20 mL, $V_{NaOH} = (100.00 + 0.2) mL = 100.20 mL$
- (4) 200.00 mL NaOH is added 10.0 mmol NaOH is in excess in the solution [OH-] = 10.0 mmol/300.0 mL= 0.033 M, pH = 12.52

Vol of NaOH added	pН	
0.00	1.00	$[\mathbf{H}^{+}]=\mathbf{C}_{\mathbf{H}\mathbf{A}}$
20.00	1.18	
80.00	1.95	
98.00	3.00	
99.80	4.00	
99.98	5.00	
100.00	7.00	equivalence point
100.20	10.00	當量點
120.00	11.96	
200.00	12.52	

- Strong Acid/Base Titration (強酸/強鹼滴定)
- pH has little change when HCl or NaOH is in large excess
- 鹽酸或氫氧化鈉過量時,pH值變化均不大 ■ pH has sharp change around the equivalence point with very small amount of change in titrant
 - 在當量點附近,少量的滴定劑就使溶液的pH值
 - 發生極大的改變
- At the equivalence point: $N_{HCl} = N_{NaOH}$ 在當量點時,滴定劑與被滴定物的莫耳數正好相等
- End point: change in color of the indicator 滴定終點,指示劑變色後不再退色
- Indicator choice 選擇合適的指示既有助滴定的精確度

Bromothymol blue is a better indicator. 溴瑞香草藍6.0~8.0 是較佳的指示劑

Weak Acid versus Stong Base 強鹼滴定弱酸

[Example]

At 25°C, 100.00 mL 0.100 M HOAc is titrated with 0.100 M NaOH

- (a) What's the pH value before the titration?
- (b) What's the pH when x mL of NaOH is added?
- (c) How much NaOH is needed to make a solution with pH=3.00? pH=10.00?

在25℃用0.100 M NaOH溶液滴定100.00 mL 0.100 M HOAc

- (a)滴定前的pH值為何?
- (b)加入x mL NaOH時溶液的pH值為何?
- (c)需加入多少0.100 M NaOH,溶液的pH值為3.00或10.00?

Before NaOH is added

0.100 HOAc solution,
$$[H^+] = (K_a C_{HOAc})^{1/2} = 1.34 \times 10^{-3} \text{ M}, \text{ pH} = 2.87$$

Before the eq. pt.

10.00 mL 0.1 M NaOH is added, $[OAc^{-}] = 1.0 \text{ mmol} / 110 \text{ mL}$,

 $[HOAc] = 9.0 \text{ mmol/}110 \text{ mL}, pH = pK_a + log(1/9) = 3.79$

Similarly, 20.00 mL 0.1 M NaOH is added, $pH = pK_a + log(2/8) = 4.14$

40.00 mL 0.1 M NaOH is added, $pH = pK_a + log(4/6) = 4.56$

m = n/2 50.00 mL 0.1 M NaOH is added, pH = pK_a = 4.74

60.00 mL 0.1 M NaOH is added, $pH = pK_a + log(6/4) = 4.92$

80.00 mL 0.1 M NaOH is added, pH = p K_a + log(8/2) = 5.34

98.00 mL 0.1 M NaOH is added, pH = $pK_a + log(9.8/0.2) = 6.43$

99.45 mL 0.1 M NaOH is added, $pH = pK_a + log(9.945/0.055) = 7.00$

At Eq. Pt.

100.00 mL 0.1 M NaOH is added, the 200 mL solution contains 0.05 M NaOAc.

$$[OH^{-}] = (K_b[OAc^{-}])^{1/2} = 5.27 \times 10^{-6} M, pH = 8.72$$

After the eq. pt.

120.00 mL 0.1 M NaOH is added, $[OH^{-}] = 2.0/220 = 9.09 \times 10^{-3} \text{ M}, \text{ pH} = 11.96$

200.00 mL 0.1 M NaOH is added, $[OH^-] = 10.0/300 = 9.09 \times 10-3 \text{ M}$, pH = 12.52

Vol of NaOH added	pН	
0.00	2.87	$[H^{+}]=(K_{a}C_{HA})^{1/2}$
20.00	4.14	
50.00	4.74	$pH = pK_a$
80.00	5.34	
94.80	6.00	
99.45	7.00	
100.00	8.72	equivalence point 當量點
120.00	11.96	H E MI
200.00	12.52	

- Weak Acid/Strong Base Titration (弱酸/強鹼滴定)
- Initial pH is $(K_aC_{HA})^{1/2}$
- When NaOH is added, the solution contains the mixture of HOAc and NaOAc.
 - 加入NaOH時,形成HOAc及NaOAc的混合溶液,所以有 共同離子效應
- $lackbox{P}$ $pH = pK_a$, when $[HOA] = [OAc^-]$ or $V_{NaOH} = \frac{1}{2}V_{HOAc}$ NaOH 的 莫 耳 數 與 HOAc 的 莫 耳 數 相 等 時 , $pH = pK_a$
- lacksquare $pK_a \pm 1$ is the buffer region. $pK_a \pm 1$ 是緩衝溶液區
- At the equivalence point, the solution is a NaOAc solution with half of C_{HOAc}
 在滴定當量點,形成醋酸鈉溶液,但是濃度僅有原來醋酸溶液的一半
- Phenolphthalein is a proper indicator, but not methyl red.

 酚酞是合適的指示劑

Dilution Effect

Before NaOH is added

0.00100 HOAc solution,
$$K_a = [H^+][OAc^-]/[HOAc] = x^2/C_{HOAc} - x$$

 $[H^+] = x = 1.25 \times 10^{-4} \text{ M}, \text{ pH} = 3.90$

Before the eq. pt.

10.00 mL 0.1 M NaOH is added, pH = pK_a + log([OAc⁻]/[HOAc]) Note: $[OAc^{-}]/[HOAc] \neq 1:9 (> 1/9)$

At Eq. Pt.

100.00 mL 0.1 M NaOH is added, the 200 mL solution contains 0.0005 M NaOAc.

$$K_b = \frac{[\text{OH}^-]^2 - K_w}{[\text{OAc}^-]_0 - \frac{[\text{OH}^-]^2 - K_w}{[\text{OH}^-]}}$$

After the eq. pt.

200.00 mL 0.001 M NaOH is added, $[OH^{-}]=0.100/300=3.33 \times 10^{-4} M$, pH = 10.52

100 mL 0.001M HOAc is titrated with 0.001 M NaOH

Titration curves for the acids of different acid strength

- Acid-Base Indicator 酸鹼指示劑
- 酸鹼指示劑是弱酸性或弱鹼性的物質,其酸式與鹼式 可以顯出不同的顏色

bromothymol blue 溴瑞香草藍

phenophthalein 酚酞

The pH ranges shown are approximate. Specific transition ranges depend on the indicator solvent chosen.

Figure 8.8

Why does an indicator work?酸鹼指示劑原理

HIn
$$\Rightarrow$$
 H⁺ + In⁻
 $pH = pK_{HIn} + log([In]/[HIn])$
 $[In]/[HIn] = 10, pK_{HIn} = pH + 1$
 $[In]/[HIn] = 0.1, pK_{HIn} = pH - 1$
 $0.1 \le [In]/[HIn] \le 10 \quad pK_{HIn} = pH(eq. pt.) \pm 1$

HIn的pK_{HIn}值在滴定當量點±1的範圍內,其鹼式與 酸式的量可相差約十倍,有明顯的顏色差異,就是合 適的指示劑

acid form

base form

phenolphthalein

●Titratiin a polyprotic acid 強鹼滴定多質子酸

Point in the Titration	Major Species Present	Equilibrium Expression Used to Obtain the pH
No base added	H ₃ A, H ₂ O	$K_{a_1} \approx \frac{[H^+][H_2A^-]}{[H_3A]}$
Base added		
Before the first equivalence point	H_3A , H_2A^- , H_2O	$K_{a_1} = \frac{[H^+][H_2A^-]}{[H_3A]}$
At the first equivalence point	H_2A^-, H_2O	See the following discussion
Between the first and second equivalence points	H ₂ A ⁻ , HA ²⁻ , H ₂ O	$K_{a_2} = \frac{\{H^+\}[HA^{2-}]}{\{H_2A^-\}}$
At the second equivalence point	HA^{2-} , H_2O	See the following discussion
Between the second and third equivalence points	HA^{2-}, A^{3-}, H_2O	$K_{a_3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$
At the third equivalence point	A^{3-}, H_2O	$K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a_3}}$
		$= \frac{[HA^{2-}][OH^{-}]}{[A^{3-}]}$
Beyond the third equivalence point	A ^{3~} , OH [~] , H ₂ O	pH determined by excess 0

●Titratiin a polyprotic acid 強鹼滴定多質子酸

- Solubility Equilibria 溶解度平衡
- As acid-base chemistry, solubility is governed by the chemical equilibria

物質的溶解度遵守化學平衡定則

■ When an ionic solid dissolves in water, the solubility product constant is defined according to the law of mass action.

離子固體的溶解度積常數是溶液中離子濃度冪次的乘積

$$CaF_2$$
 $Ca^{2+}_{(aq)} + 2F_{(aq)}^{-} K_{sp} = [Ca^{2+}] [F^{-}]^2$

- Solubility is the amount (concentration) of a substance that dissolves in a given volume of solvent at a given temparature. 物質的溶解度是其溶解在定量溶液中的量,通常以g/100 g soln'或體積莫耳濃度表示
- Solubility of ionic solids is influenced by common ion effect, pH value, temparature, etc.

電解質的溶解度會受同離子效應、pH值、溫度等影響

● Relative Solubilities 相對溶解度

Example: Compare the solubilities for CuS, Ag₂S, Bi₂S₃.

	K_{sp} (25 ^{o}C)	solubility (M)
CaSO ₄	6.1x10 ⁻⁵	7.2×10^{-3}
CuI	5.0×10^{-12}	2.2x10 ⁻⁶
AgI	1.5×10^{-16}	1.7×10 ⁻⁸
CuS	8.5×10^{-45}	9.2x10 ⁻²³
Ag_2S	1.6x10 ⁻⁴⁹	3.4x10 ⁻¹⁷
Bi_2S_3	1.1x10 ⁻⁷³	1.0x10 ⁻¹⁵

AgI
$$\rightarrow$$
 Ag⁺ + I⁻ K_{sp} = [Ag⁺][I⁻],
the solubility of AgI is x , $(x)^2$ = 1.5x10⁻¹⁶, x = 1.2x10⁻⁸ M
Bi₂S₃ \rightarrow 2 Bi³⁺ + 3 S²⁻ K_{sp} = [Bi³⁺]²[S²⁻]³
the solubility of Bi₂S₃ is x , $(2x)^2(3x)^3$ = 1.1x10⁻⁷³, x = 1.0x10⁻¹⁵ M

● Common Ion Effect 共同離子效應

Example: Ag_2CrO_4 in a 0.100 M $AgNO_3$, $[Ag^+] = ? [CrO_4^{2-}] = ?$

$$Ag_2CrO_4 \rightarrow 2 Ag^+ + CrO_4^{2-} K_{sp} = [Ag^+]^2[CrO_4^{2-}],$$

the solubility of Ag_2CrO_4 is x , $(2x)^2(x) = 9.0x10^{-12}$, $x = 1.3x10^{-4}$

$$[Ag^+] = 2x = 2.6x10^{-4} M$$

$$[CrO_4^{2-}] = x = 1.3x10^{-4} M$$

Considering the common ion effect,

the solubility of Ag_2CrO_4 is x

$$[Ag^+] = 2x + 0.100, [CrO_4^{2-}] = x,$$

$$(2x + 0.100)^2(x) = 9.0x10^{-12}, x << 0.100, x = 9.0x10^{-10} M$$

$$[Ag^+] = 0.100 M$$

$$[CrO_4^{2-}] = x = 9.0 \times 10^{-10} M$$