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1.1 Fluids vs solids

1.2 Continuum – number density
Local thermodynamic equilibrium
Pressure, temperature
Fields – density, pressure, temperature, velocity

1.3 Streamlines, pathlines, streaklines, material lines

1.4 Fluid motion: stress and strain rate

1.5 Dimensional Analysis: Buckingham Pi Theorem
1.6 Dimensionless parameters

1. Basic concepts of fluid flow
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§1.1 fluid  vs solid

A solid can resist a shear stress by a static deformation. 

normal stressσ

 shear stressτ
θ

Take an element A：

The fluid, as long as the shear stress is applied, moves and deforms 
continuously.
A fluid  at rest must be in a state of zero shear  stress.

stress
vs

strain
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Fluid at rest：

0τ =

hydrostatic

Fluid in motion：Any shear causes motion.

marked particles at time=0

time↑
wind stress

vs
strain rate
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deformation rate
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Newtonian
dilatant 澱粉液

pseudo plastic  紙漿

Bingham plastic 牙膏solid
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• Fluids cannot hold a shape independent of their surroundings,
because of their inability of the intermolecular forces to
maintain an unchanging angular orientation of the molecules
w.r.t. each other.

• Fluids can be 
mixture, e.g. air, system with chemical reaction (產物 + 反應物) 

or 
multiphase, e.g. water + vapor (冷卻循環中之冷媒)
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A fluid is called continuum which means its variation in properties is so
smooth that the differential calculus can be applied.

i.e. fluid properties can be thought of as varying continually in space.
e.g. a container with volume 𝑉 and total number of molecules N

§1.2 continuum

𝑉 1Vδ

2Vδ
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 The fluid molecules are in some way randomly distributed in 𝑉.
The probabilities for a molecule to located in 𝛿𝑉1 and 𝛿𝑉2 may
not be the same.

 If N is not so large that 𝛿𝑉 / is comparable or less than the
molecular spacing or the so-called mean free path,

 some 𝛿𝑉 have particles, some do not.
each 𝛿𝑉 sometimes has and sometimes doesn’t have particles.
can not find a 𝜌 representing the density of volume 𝛿𝑉 (𝑉)

 dilute gas (gas dynamics, molecular dynamics)
 If N is so extremely large that the average number of molecules

locating in any 𝛿𝑉 is relatively large to its fluctuation, then
 one 𝜌 can characterize the density of one 𝛿𝑉 𝑥 .
 continuum
 well defined 𝜌 𝑥, 𝑡

§1.2 continuum
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Thus, if define ρ ≡ ·
Where m is the mass of each molecule             𝛿N is the number of molecules found(measured) in one

particular 𝛿𝑉
ρ

𝛿𝑉10 𝑚𝑚# of 𝛿𝑉s >> N

gas dynamic Fluid mechanics

§1.2 continuum
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Kinetic theory

2

1mean free path 
2 Vd n

=
π

molecule diameter
 = molecules per unit volumeV

d
n

=

=  for ideal gasesAN P
RT

https://helderpad.com/2017/03/02/gas-flow-conductance/

2 at 20 CN °

( )2Example: 1atm and 300K : N  0.2d nm≈

( )

2

2 23 5 2

mean free path 

2
8.314 300

2 0.2 6 10 10
=234nm 

A

RT
d N P

J K mole K
nm mole N m

=
π

⋅ ×=
π ⋅ × ⋅
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Example: air𝛿𝑉 / ~ 10  𝑚 i.e. 𝛿𝑉~10   𝑚
@STR: total N~ 10  >>1

§1.2 continuum

Fluid mechanics is a macroscopic science.

in such a way that there are still many enough molecules in 𝛿𝑉
In fluid mechanics, ρ ≡ lim→ = ρ(x,y,z,t)
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§1.2 continuum

https://read01.com/ePJN06O.html#.YxxRbHZBy5c                         
來源：熊年祿等《電離層物理概論》 14



• Study the average behavior of a very large number of molecules 
in the vicinity of a point in a fluid. 

• It is concerned with characteristics that can be observed and 
measured on the laboratory scale.

𝛿𝑉, ρ2

𝛿𝑉 , ρ1

𝛿𝑉 , ρ3

§1.2 continuum
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• A fluid particle is defined as a small mass of fluid of fixed
identity of volume 𝛿𝑉~10 𝑚𝑚 .

• Thermodynamic Properties: Assume all timescales and length
scales involved with the molecular motions are much smaller
than the laboratory scales. (e.g. collision time, mean free path
etc.) so that a fluid subjected to sudden changes rapidly
adjusts itself toward equilibrium.
(local thermodynamic equilibrium)

ρ1 ρ2 ρ3 ρ4

ρ(x,y,z,t)𝛿𝑉 ( ), , ,P x y z t

( ), , ,T x y z t

§1.2 continuum
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• Fluid velocity 𝑢 𝑥, 𝑦, 𝑧, 𝑡  is the mean velocity of molecules
within 𝛿𝑉 which instantaneously surrounding point Q(x,y,z).

• Thermodynamic properties exist as point functions and follow 
all the laws and state relation of ordinary equilibrium 
thermodynamics (such as PV=nRT) .

ρ(x,y,z,t) density field

( ), , ,  pressure fieldP x y z t

( ), , ,  temperature fieldT x y z t

( ), , ,  velocity fieldu x y z t

§1.2 continuum
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𝛿𝑉, 𝑢2

𝛿𝑉 , 𝑢1

𝛿𝑉 , 𝑢3

Streamline: a curve tangential to the velocity vector everywhere

§1.2 continuum

https://www.grc.nasa.gov/WWW/K-12/airplane/foil3.html
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https://www.av8n.com/irro/profilo1_e.html

§1.3 flowlines

Steamline: a curve tangential to velocity vector everywhere
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A streamline in a flow field that is everywhere tangent to the 
velocity for any instant of time t.
 No flow can cross a streamline.
 Streamlines may change in time. 

s

parameter: s

§1.3.1 streamlines

( ) ( )0 0 0IC:  , , , ,  at 0x y z x y z s= =

( ) ( ), , , ,dx dx dy dz u u v w= = 

0u dx× =  dx dy dz ds
u v w

 = = ≡

( )

( )

( )

, , ,

, , ,

, , ,

dx u x y z t
ds
dy v x y z t
ds
dz w x y z t
ds

=

=

=

( )

( )

2

1   
   

x x s ds
x dx
x s dx

= +
= +
= +

 
 
 

20



§1.3.1 streamlines

Example:

2dx x
ds

= 2
0

sx x e=

dy yt
ds

= −  0
tsy y e−=

2

0 0

1
t

x y
x y

   
=   

   

( )2 ,u x yt= −

( ) ( )0 0e.g.  , , 2,1,4x y t =
4 2 216  4x y x y=  =

( ) ( )( )0 0Given , ,t x y y s y x s =

0u ds× = 

( ) ( )2 , ,0 , ,0 0x yt dx dy− × =

( )2 0zxdy ytdx e+ =

2
dx dy

x yt
= −

0 0

1 1ln ln
2

x y
x t y
  

= −  
  

2

0 0

1
t

x y
x y
  

=  
  

parameter = s
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A pathline is the path or trajectory traced out by a particular 
fluid particle. 

§1.3.2 pathlines

𝑥 , 𝑦 , 𝑧 , 𝑡
(x,y,z,t)parameter: t

time

( ) ( )0 0 0 0IC:  , , , ,  at x y z x y z t t= =

( )

( )

( )

, , ,

, , ,

, , ,

dx u x y z t
dt
dy v x y z t
dt
dz w x y z t
dt

=

=

=

( )0 0; ,x x t t x=  

parameter

Given (Lagrangian marker)
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Example:

§1.3.2 pathlines

( )2 ,u x yt= −

2dx u x
dt

= =

dy v yt
dt

= = −

( )0
0

2   ln 2dx xdt t t
x x


 =  = −

 

 dy tdt
y

 = −

( )2 2
0

0

1 ln
2

y t t
y


 = − −
 

( ) ( )2 2
0 0

1 exp
2

y t y t t  = − −  

( ) ( )0 0 exp 2x t x t t = −  

~ parametric form

0
0

1 ln
2

xt t
x


= + 
 

2

2
0

0
0

0

1ln
2

1 ln
2

y t t
y

x
x

 
+ 



   = − − 
     

( ) ( )( )0 0 0Given , ,t x y y t y x t =
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§1.3.3 streaklines

( ) ( )0 0 0, , , ,x y z x y z=

( ) ( )
( ) ( )
( ) ( )

0 0 0 01

0 0 0 02

0 0 0 03

P1:  , , , ,  at time

P2:  , , , ,  at time

P3:  , , , ,  at time

x y z x y z t

x y z x y z t

x y z x y z t

= =

= =

= =


( ) ( )
( ) ( )
( ) ( )

1 1 1

2 2 2

3 3 3

P1:  , , , ,  at time

P2:  , , , ,  at time

P3:  , , , ,  at time

x y z x y z t

x y z x y z t

x y z x y z t

= =

= =

= =


A streakline is a line in a flow field which is the locus of particles 
which have earlier passed through a prescribed point. 

time = t

( )0 0; ,x x t t x=  

parameter

given
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§1.3.3 streaklines

Example: 𝑢 2𝑥, 𝑦𝑡

Pathline: parameter = t

( ) ( )( )0 0 0Given , ,t x y y t y x t =

2

2
0

0
0

0

1ln
2

1 ln
2

y t t
y

x
x

 
+ 



   = − − 
     

streakline: parameter = t0

( ) ( )( )0 0 0 0Given , ,t x y y t y x t =

2

0

2

0

1 lnn
2 2
1l xt

x
y t
y

 
− 

   = − −  
      

( )0
0

ln 2x t t
x


= −
 

( )2 2
0

0

1ln
2

y t t
y


= − −
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t=0.2
t=0.5

t=0

§1.3.4 material lines

Material line: parameter = ξ

( ) ( )2 2
0 0

1exp
2

y y t t = ξ − −  

( ) ( )0 0exp 2x x t t= ξ −  

( ) ( ){ } ( ) ( )( )0 0 0Given , , ,t t x y y y xξ ξ  ξ = ξ

time = t

time = t0ξ
Lagrangian marker
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:

(1 2 )

Example

u x t
v y

= +
=

( )
0

0

streamline:

ln 1 2

ln

x t s
x

y s
y


= +

 


=
 

( ) ( )

( )

2 21
0 02

0

0
0

pathline:

ln

ln

x t t t t
x

y t t
y


= − + −

 


= −
 

streakline at time t=1

pathline passing (1,1) at time (t0)=1

streamline at 
time t=1

x

y
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Steady flows

~ time-independent fields
~ A streamline, pathline, streakline passing through a same 

reference point correspond to a same curve.

https://www.av8n.com/irro/profilo1_e.html
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1.4  fluid motion

translation
x

y

rotation
x

y

linear deformation
x

y

angular deformation
x

y

motion= translation + solid rotation + deformation
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1.4.1 Strain rate

Consider a fluid element

𝛿𝑥
𝛿𝑦 𝛿α

𝛿𝑢𝐴 · 𝛿𝑡
A

A’

B

B’

x

y

D

C’

C
𝛿𝑣𝐶 · 𝛿𝑡𝛿β

tan A

A

u y t
u t uy t

y v t y y

∂ δ ⋅δ
δ ⋅δ ∂∂δα ≈ δα = = = ⋅δ

δ + δ ⋅δ δ ∂

tan C

C

v x tv t vx t
x u t x x

∂ δ ⋅δδ ⋅δ ∂∂δβ ≈ δβ = = = ⋅δ
δ + δ ⋅δ δ ∂

A

A

C

C

uu u y
y
vv v y
y
uu u x
x
vv v x
x

∂= + δ
∂
∂= + δ
∂
∂= + δ
∂
∂= + δ
∂

( )
( )
( )

,

,

,

D

A

C

x x y

x x y y

x x x y

=

= + δ

= + δ
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1.4.1 Strain rate

Consider a fluid element

1 1
2 2

v u
t x y

 δβ − δα ∂ ∂Ω = = − δ ∂ ∂ 

Rotational rate:

( )1 1
2 2

v uS
t x y

δβ + δα  ∂ ∂= = + δ ∂ ∂ 

Strain rate:

𝛿𝑥
𝛿𝑦 𝛿α

𝛿𝑢𝐴 · 𝛿𝑡
A

A’

B

B’

x

y

D

C’

C
𝛿𝑣𝐶 · 𝛿𝑡𝛿β

u t
y
v t
x

∂δα = ⋅δ
∂
∂δβ = ⋅δ
∂
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1.4.2 Stress

Stress

first subscript： the normal direction of the plane on which 
the stress acts

second subscript ：the direction in which the stress acts

the state of stress at a point ：
    
    
     

xx xy xz

yx yy yz

zx zy zz

σ τ τ


τ σ τ 
 τ τ σ 

0
lim

x

y
xy A

x

F
Aδ →

δ
τ =

δ
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1.4.2 Stress

x

z

y

 𝜎  
𝜏𝜏  

 A stress components is positive when the 
direction of the stress component and the 
plane on which it acts are both positive or 
both negative. 

 Normal stress: 𝜎 , 𝜎 , 𝜎
 Shear stress: 𝜏 , 𝜏 , 𝜏 , 𝜏 , 𝜏 , 𝜏

Surface forces (stress): the force acting between molecules on the 
surface and molecules outside the fluid particle in the surrounding 
medium, i.e. intermolecular forces.
Shear stress causes continuous shear deformation in a fluid.
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1.4.2 Stress Symmetry xy yxτ = τ

xyτxyτ

yxτ

yxτ

As , 0 :x yδ δ →

( ) ( )torque = 2 2
2 2xy yx
x yy xδ δ⋅ ⋅ τ δ − ⋅ ⋅ τ δ

2

2= inertial moment d
dt

θ⋅

( )2 2inertial moment ~ x y x yρδ δ ⋅ δ + δ

( ) ( )2 2 =0
2 2xy yx
x yy xδ δ⋅ ⋅ τ δ − ⋅ ⋅ τ δ

xy yxτ = τ
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1.4.3 Newtonian fluids

A Newtonian fluid is one where there is a linear relationship between 
stress and strain-rate. E.g. water, air , gasoline under normal condition.

( ) 2

xy

xx

u v
y x

uP u
x

 ∂ ∂τ = μ + ∂ ∂ 
∂σ = − − λ∇ ⋅ + μ
∂



μ is called the shear viscosity coefficient.

λ is called the second viscosity.

κ = 0 for dilute monatomic gases

3  for waterκ ≈ μ
negligible unless volume expansion is huge.λ 2μ 3⁄

κ=2μ/3+λ is called the bulk viscosity (=0, Stokes’ hypothesis).

= yxτ
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( )2
3 3

xx yy zz
mP P u

σ + σ + σ μ ≡ − = − λ + ∇ ⋅ 
 



1.4.3 Newtonian fluids

(mechanical pressure)

P : thermodynamic pressure

κ=λ 0 by thermodynamic second law

 Shear viscosity 𝜇 strongly depends on temperature                𝜇 ↑ as T ↑ gasses                     𝜇 ↓ as T ↑ liquid

 weakly depends on pressure

Kinetic viscosity (momentum diffusivity)  ν = μ/ρ
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1.4.4 non-Newtonian fluids
Newtonian fluids: μ = constant
Non-Newtonian fluids： mostly due to very large fluid molecules 
 dilatant：deformation rate ↑ μ ↑

e.g. 澱粉懸浮夜、砂粒懸浮夜

 pseudo plastic：deformation rate ↑  μ ↓ 
e.g. polymer solution 、紙漿

 Bingham plastic：behaves like a solid when the shear stress is less 
than some yielding stress; behaves like a fluid thereafter  

e.g. 牙膏

https://www.youtube.com
/watch?v=G1Op_1yG6lQ

xy
u v
y x

 ∂ ∂τ = μ + ∂ ∂ 
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 thixotropic： μ ↓ as time ↑ which shear stress keeps constant. 

e.g. 油漆

 rheopectic： μ ↑ as time ↑ 

 viscoelastic：fluids partially return to their original shape after 
the shear stress is released.

1.4.4 non-Newtonian fluids

Remark: viscosity~ molecular interactions   
~ lead to viscous drag (τxy)
~ cause momentum transfer

https://www.youtube.com/watch?v=S8gP3yWsloc
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Unit of viscosity

xy
u v
y x

 ∂ ∂τ = μ +  ∂ ∂ 

e.g. 1 atm, 20℃    

air

water

mercury

5 5 21.8 10 1.51 10kg m s m sμ = ⋅ ⋅ ν = ⋅
3 6 210 1.01 10kg m s m s− −μ = ⋅ ν = ⋅

3 7 21.5 10 1.16 10kg m s m s− −μ = ⋅ ⋅ ν = ⋅

2xy
N
m

 τ = 

1u v
y x s

 ∂ ∂+ = ∂ ∂ 

[ ]
2

2 2
s N s kg kg

s
m s

m m m
⋅ ⋅ ⋅μ = =

⋅
=

[ ]
3 2kg m

s
m

kg sm
 μν = = ⋅ = ρ ⋅ 
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1.4.5 Inviscid flow vs Viscous flow

• inviscid flow: 𝜇 0 , no inter-molecular forces

• inviscid fluids do not exist; all fluids posses viscosity 

• the assumption of 𝜇 0 can simplify analysis and get meaningful 
results.

• In any  viscous flow, the fluid in contact with a solid boundary has 
the same velocity as the boundary itself.

~ nonslip boundary condition

flows at wall have zero velocity

fluids at the belt has the same velocity as that of the belt (plate)

solid wall

viscous inviscid
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1.4.5 Viscous flow

Streamlines parallel to the plate?

No! v > 0 for mass conservation.

U
boundary layer

inviscid region

O xx
u

U U
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1.4.5 Inviscid flow vs Viscous flow

A

B

C

inviscid viscous
separation

Inviscid
A: stagnation point
• velocity ↑ from A to B; ↓ from B to C
• pressure ↓ from A to  B; ↑ from C to B
• symmetry  no pressure drag
• inviscid  no shear stress  no viscous drag 

Viscous
total drag = pressure drag 

+ viscous drag 
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adverse pressure gradient 
“streamlining ” shape   reduce adverse pressure gradient
 delay the separation
 reduce pressure drag
 viscous drag increases  (∵surface increases)
 net drag reduced 

1.4.5 Viscous flow
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~ give suggestions for possible grouping of related parameters such 
that the groups of parameters, not the parameters themselves, are 
the key factors determining the behaviors of the given system.

1.5  Dimensional Analysis 

Buckingham Pi Theorem
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dimensions and units
• A dimension is the measure by which physical variable is expressed 

quantitatively,
e.g. length, time, temperature, force, torque,……

• A unit is a particular way of attaching a number to a dimension

{ }, , , ......M t L T=e.g. {mass, time, length, temperature, electric field}

{ }, , , ......F t L T=or   {force, time, length, temperature, electric field}

• Primary dimensions: those dimensions which basically express all 
observable physical quantities and are independent from each other 
(none of them be measured in terms of any combination  of the 
others).

[ ]F

[ ]t

2kg m s⋅e.g. force:            Newton,               , lbf, …

time:           second, minute, hour, day, …

45



• Let m be the minimum number of independent dimensions required to 
specify the dimensions of all the parameters 𝑞 , 𝑞 . . . . . . , 𝑞 .

• Then these n parameters can be grouped into n-m independent 
dimensionless parameters, Π parameters, such that

1 2or     ( , ......, ) 0nF q q q =1 2 3          ( , ......, )nq f q q q=

dependent 
variable

n-1 indep. variables

1.5 Dimensional Analysis - Buckingham Pi Theorem
Given a physical problem and

1 2 3( , ,......, )n mf −Π = Π Π Π

1 2 3( , , ,......, ) 0n mF −Π Π Π Π =

or

~ requirement of consistency of dimension ~ 
46



Example 1: 

hg

( ), ,atmP P P f g hΔ = − = ρ

[ ]
2

2 2 2 2
F N kg m s kgP
L m m m s

⋅ Δ = = = =  ⋅ 

[ ] 3 3
M kg
L m

 ρ = =  

[ ] 2 2
L mg
t s
 = =  

[ ] [ ]h L m= =

n=4

m=3

n−m=1
47



a b cP g hΠ = Δ ⋅ρ

( )2 3 21
a b

ckg kg m m
m s m s

    =     ⋅    

:   1 0
:   1 3 0

:   2 2 0

kg a
m a b c
s b

+ =
− − + + =

− − =

1a b c= = = −

1 1 1P g h− − −Π = Δ ⋅ρ

 Π = constant

P ghΔ ∝ ρ

( ) 0F Π =

= constantP
gh

Δ
ρ
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Wanted: drag acting on a moving sphere in 
a stationary fluid

(D,U, , )F f= ρ μ

U

[ ] 2
mF N kg
s

= = ⋅

[ ] [ ]D L m= =

[ ] L mU
t s

 = =  

[ ] 3 3
M kg
L m

 ρ = =  

[ ] M kg
Lt m s

 μ = =  ⋅ 

n=5

m=3

n−m=2

1 1 1
1

a b cF D UΠ = ⋅ρ

2 2F U D= ρ

2 2 2
2

a b cD UΠ = μ ⋅ρ

UD= μ ρ

2 2 ( )F U D f UDρ = μ ρ

Example 2: 
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2 2
F f

U D UD
 μ= ρ ρ 

• investigate the effect of different values of              on                 
instead of effects of individual  parameter ρ, U, D, or μ

• goal 1 (reduce number of investigated parameters)
• goal 2 (model flow vs. real flow)

UDμ ρ 2 2F U Dρ

model mod
2 2 2

el
2

real real

F F
UD UD U D U D

      μ μ=  =      ρ ρ ρ ρ      

unknown, determined by experiments

Dimensional Analysis - Buckingham Pi Theorem

UDμ ρ
2 2F U Dρ

• Two flows may be involved with different ρ, U, D, or μ but have 
the same value of                
 must have the same value of 
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Example 3: 
parameter                symbol               unit

Lift per span                  L N/m=kg/s2

Angle of attack             α

Freestream velocity       U∞ m/s

Freestream density        ρ∞ kg/m3

Freestream viscosity      μ∞ kg/m.s

Freestream speed            a∞ m/s
of sound

size of body                   c m
(e.g. chord)n=8

m=3

5Π ’s!

gravity                             g m/s2
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1 21
2

= lift coefficientL
L C
U c∞ ∞

Π = ≡
ρ

Example 3: 

2 = angle of attackΠ = α

3 = Re = Reynolds numberU c∞ ∞

∞

ρΠ =
μ

4 =  = Mach numberU Ma
a

∞

∞

Π =

( ),Re, ,L LC C Ma Fr= α

1 22

5 = Froude #  U Fr
gc

∞ 
Π = = 
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Example 4: 

parameter                symbol               unit

Thrust                            T N=kg.m/s2

Propeller diameter        D m

Flight speed                 V0 m/s

Freestream density        ρ∞ kg/m3

Freestream viscosity      μ∞ kg/m.s

Propeller speed             n 1/s
n=6
m=3

3Π ’s!

Okulov V.L., Sorensen J.N ., van Kuik G.A.M. Development of the optimum rotor theories.
Moscow-Izhevsk: R&C Dyn., 2013. 120 p. ISBN 978-5-93972-957-4.
was translated in English of by interpreters of Institute Termophysics, Novosibirsk, Russia 53



1 2 41
2

= thrust coefficientT
T c
n D∞

Π = ≡
ρ

Example 4: 

2

2 ~ = Re = Reynolds numbertipDVD n ∞∞

∞ ∞

ρρΠ =
μ μ

0
3 =  = advance ratioV J

nD
Π =

( )Re,T Tc c J=
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Geometric similarity: (length scale) 
• model and prototype be the same shape and all linear dimensions  
f the model be related to corresponding dimensions of the prototype by a 
constant scale factor.
Kinematic similarity: (length scale+time scale) 
• velocities at corresponding points are in the same direction and
are related in magnitude by a constant scale factor.         
 streamline patterns related by a constant scale factor
Dynamic similarity: (length scale + time scale+ force scale)
• two flows have force distributions such that identical types of forces are 

parallel and are related in magnitude by a constant scale factor at all 
corresponding points. 
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To achieve “Dynamic similarity” between a real flow and its model 
flow, all but one of  these Π−parameters must be duplicated.

1 2( , ,......, ) 0n mF −Π Π Π =

to be determined same for both the real flow and 
the model flow

2 model 2

3 model 3

model

( ) ( )
( ) ( )

( ) ( )

real

real

n m n m real− −

Π = Π
Π = Π

Π = Π


1 model 1( ) ( )realΠ = Π

Only if

then
56



model real( , , ) ( , , )c c cu x y z u x y z∝ 

corresponding point

model( , , ) ( , , )c c c realF x y z F x y z∝
 

In the lab, to ensure dynamic similarity, i.e.

one requires

geometric similarity 

and  kinematic similarity

everywhere

Remark: At least make important Π’s in the same; others are 
made up in some other ways such as analysis, experimental 
measurement, etc. Reasonable results can be still possible.
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1.6 Dimensionless parameters

2inertial force ~ U Lρ

pressure force ~ P LΔ

gravity force ~ gρ

2friction force ~ U Lμ

2

inertial force per unit volume ~ ~ ~ U Udu dt
L U L

ρ ρ ρ

pressure force per unit volume ~ ~A P P
A L L

Δ Δ
⋅

gravity force per unit volume ~ gρ

2friction force per unit volume ~ ~ ~ xy

u
A Uy
A L L L

∂μ⋅ τ μ∂
⋅
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(i)   Reynolds number inertial effect
viscous effect 

Re= ≡
2

2
U L UL
U L

ρ ρ≡ =
μ μ

2L
L U

ν=

:  convection speed >> viscous diffusion s ed1 peRe

1.6 Dimensionless parameters

: viscous diffusion speed >> convection s ed1 peRe

 ignore convective term

 Stokes flows         

viscous effect >> inertial effect

As Re→ 0, can we ignore viscous force?  
The larger Re, the thinner region (boundary 
layer) is affected by the viscous effect.

cases of  μ→ 0 ≠ cases of μ=0
i.e. The case μ=0 is a singularity 

No!! 
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laminar vs turbulent 
Reynolds experiments: fixed diameter of the pipe

small velocity

water
flow dye

dye remains in a single filament 
little dispersion little mixing

laminar: smooth
easier to handle, analytic

time

velocity signal

water 
flow

large velocity

dye stretched, twisted breaks 
strong dispersion, strong 
mixing  

turbulent: random
most of cases, empirical

velocity signal

time
small  ULRe ≡

ν large  ULRe ≡
ν 60



(ii) Mach number 

1.6 Dimensionless parameters

flow speed
sound speed

UM
a

= ≡ =

sound speed  
d

a dP=
ρ

2 2 2 2 3
2

2 2( ) ( ) ( )
U U L U L LM

dP d dP d L dP d L
ρ ρ ⋅= = =

ρ ρ ρ ρ ρ

inertial force
force required for compressibility

=

2inertial force ~ U Lρ

pressure force ~ P LΔ

gravity force ~ gρ

2friction force ~ U Lμ
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incompressible : force required for compressibility >>1

in general,  M ≤0.3    approximately incompressible

subsonic flow: M<1

sonic flow : M=1

supersonic flow : M>1

hypersonic flow: M>5

sound speed  1dP
d

a = >>
ρ

M <<1
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(iii) Euler number

1.6 Dimensionless parameters
pressure force
inertial force

Eu ≡
21

2

P L

U L

Δ=
ρ 21

2

P

U

Δ=
ρ

also called“pressure coefficient ”(Cp)

(iv) cavitation number
21

2

vP PCa
U

−= ≡
ρ

Pv = vapor pressure of the liquid fluid

(v) Froude number
1
2inertial force

gravity force
Fr  = =  

 
1

2 2U L
g

 ρ=  ρ 

1
2 2U

gL
 

=  
 

U
gL

=
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1.6 Dimensionless parameters

(vi) Weber number inertial force
surface tension force

We= =
3( )U L L

L
ρ ⋅=

σ⋅
ULρ=
σ

σ =  surface tension force per unit length

laminar
internal flows

turbulent
incompressible viscous flow

laminar
external flows

turbulent
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