流體力學 Fluid Mechanics

Basic Concepts of Fluid Flow

機械工程學系 黄美嬌 教授本作品由「機械工程學系黄美嬌 教授」授權本課程使用，
您如需利用本作品，請另行向權利人取得授權。

1. Basic concepts of fluid flow

1.1 Fluids vs solids
1.2 Continuum - number density

Local thermodynamic equilibrium
Pressure, temperature
Fields - density, pressure, temperature, velocity
1.3 Streamlines, pathlines, streaklines, material lines
1.4 Fluid motion: stress and strain rate
1.5 Dimensional Analysis: Buckingham Pi Theorem
1.6 Dimensionless parameters

§1.1 fluid vs solid

A solid can resist a shear stress by a static deformation.

Take an element A :

The fluid, as long as the shear stress is applied, moves and deforms continuously.
\Rightarrow A fluid at rest must be in a state of zero shear stress.

Fluid at rest :

hydrostatic

Fluid in motion : Any shear causes motion.

marked particles at time $=0$

－Fluids cannot hold a shape independent of their surroundings， because of their inability of the intermolecular forces to maintain an unchanging angular orientation of the molecules w．r．t．each other．
－Fluids can be
mixture，e．g．air，system with chemical reaction（產物＋反應物）
or
multiphase，e．g．water＋vapor（冷卻循環中之冷媒）

§1.2 continuum

A fluid is called continuum which means its variation in properties is so smooth that the differential calculus can be applied.
i.e. fluid properties can be thought of as varying continually in space.
e.g. a container with volume V and total number of molecules N

§1.2 continuum

\checkmark The fluid molecules are in some way randomly distributed in \forall. The probabilities for a molecule to located in $\delta \forall_{1}$ and $\delta \forall_{2}$ may not be the same.
\checkmark If N is not so large that $(\delta \forall)^{1 / 3}$ is comparable or less than the molecular spacing or the so-called mean free path,
\Rightarrow some $\delta \forall$ have particles, some do not.
each $\delta \forall$ sometimes has and sometimes doesn't have particles.
can not find a ρ representing the density of volume $\delta \forall(\forall)$
\Rightarrow dilute gas (gas dynamics, molecular dynamics)
\checkmark If N is so extremely large that the average number of molecules locating in any $\delta \forall$ is relatively large to its fluctuation, then
\Rightarrow one ρ can characterize the density of one $\delta \forall(\vec{x})$.
\Rightarrow continuum
\Rightarrow well defined $\rho(\vec{x}, t)$

§1.2 continuum

Thus, if define $\rho \equiv \frac{m \cdot \delta \mathrm{~N}}{\delta \forall}$
Where m is the mass of each molecule
$\delta \mathrm{N}$ is the number of molecules found(measured) in one particular $\delta \forall$

Kinetic theory

Example: 1 atm and $300 \mathrm{~K}: \mathrm{N}_{2}(d \approx 0.2 \mathrm{~nm})$

$$
\begin{aligned}
& \text { mean free path }=\frac{1}{\sqrt{2} \pi d^{2} n_{V}} \text { mean free path } \\
&=\frac{R T}{\sqrt{2} \pi d^{2} N_{A} P} \\
& d=\text { molecule diameter }=\frac{8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mole} \times 300 \mathrm{~K}}{\sqrt{2} \pi(0.2 \mathrm{~nm})^{2} \cdot 6 \times 10^{23} / \mathrm{mole} \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}} \\
& n_{V}=\text { molecules per unit volume } \\
&=\frac{N_{A} P}{R T} \text { for ideal gases }=234 \mathrm{~nm} \\
& N_{2} \text { at } 20^{\circ} \mathrm{C}
\end{aligned}
$$

	Pressure range	Mean free path (1)	Type of gas flow
Rough vacuum	$1000 \mathrm{mbar}-1 \mathrm{mbar}$	$6.6 \cdot 10^{-8} \mathrm{~m}-6.6 \cdot 10^{-5} \mathrm{~m}$	Viscous flow
Intermediate vacuum	$1 \mathrm{mbar}-10^{-3} \mathrm{mbar}$	$6.6 \cdot 10^{-5} \mathrm{~m}-6.6 \cdot 10^{-2} \mathrm{~m}$	Knudsen flow
High vacuum	$10^{-3} \mathrm{mbar}-10^{-7}$ mbar	$6.6 \cdot 10^{-2} \mathrm{~m}-660 \mathrm{~m}$	Molecular flow
Ultra high vacuum	$<10^{-7} \mathrm{mbar}$	$>660 \mathrm{~m}$	Molecular flow

https://helderpad.com/2017/03/02/gas-flow-conductance/12

§1.2 continuum

Example: air
$(\delta \forall)^{1 / 3} \sim 10^{-6} \mathrm{~m}$ i.e. $\delta \forall \sim 10^{-18} \mathrm{~m}^{3}$
@STR: total $\mathrm{N} \sim 10^{7} \gg 1$

$$
\text { In fluid mechanics, } \rho \equiv \lim _{\delta t \rightarrow 0} \frac{\delta m}{\delta t}=\rho(x, y, z, t)
$$

in such a way that there are still many enough molecules in $\delta \forall$

Fluid mechanics is a macroscopic science.

§1.2 continuum

§1.2 continuum

- Study the average behavior of a very large number of molecules in the vicinity of a point in a fluid.
- It is concerned with characteristics that can be observed and measured on the laboratory scale.

$$
\begin{gathered}
\rho(x, y, z, t) \\
P(x, y, z, t) \\
T(x, y, z, t)
\end{gathered}
$$

- A fluid particle is defined as a small mass of fluid of fixed identity of volume $\delta \forall \sim 10^{-9} \mathrm{~mm}^{3}$.
- Thermodynamic Properties: Assume all timescales and length scales involved with the molecular motions are much smaller than the laboratory scales. (e.g. collision time, mean free path etc.) so that a fluid subjected to sudden changes rapidly adjusts itself toward equilibrium.
(local thermodynamic equilibrium)

§1.2 continuum

- Thermodynamic properties exist as point functions and follow all the laws and state relation of ordinary equilibrium thermodynamics (such as $P V=n R T$).
- Fluid velocity $\vec{u}(x, y, z, t)$ is the mean velocity of molecules within $\delta \forall$ which instantaneously surrounding point $\mathrm{Q}(x, y, z)$.
$\rho(x, y, z, t)$ density field
$P(x, y, z, t)$ pressure field
$T(x, y, z, t)$ temperature field
$\vec{u}(x, y, z, t)$ velocity field

§1.2 continuum

Streamline: a curve tangential to the velocity vector everywhere

§1.3 flowlines

Steamline: a curve tangential to velocity vector everywhere

https://www.av8n.com/irro/profilo1_e.html

§1.3.1 streamlines

A streamline in a flow field that is everywhere tangent to the velocity for any instant of time t.
\checkmark No flow can cross a streamline.
\checkmark Streamlines may change in time.

$$
\vec{x}_{2}=\vec{x}(s+d s)
$$

$$
\begin{array}{ll}
d \vec{x}=(d x, d y, d z) \| \vec{u}=(u, v, w) & =\vec{x}_{1}+d \vec{x} \\
\vec{u} \times d \vec{x}=0 \quad \Rightarrow \frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w} \equiv d s & =\vec{x}(s)+d \vec{x}
\end{array}
$$

$$
\begin{aligned}
& \frac{d x}{d s}=u(x, y, z, t) \\
& \frac{d y}{d s}=v(x, y, z, t) \\
& \frac{d z}{d s}=w(x, y, z, t)
\end{aligned}
$$

$$
\text { IC: }(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right) \text { at } s=0^{20}
$$

§1.3.1 streamlines

Example: $\vec{u}=(2 x,-y t)$

$$
\vec{u} \times d \vec{s}=0
$$

$$
\frac{d x}{d s}=2 x \Rightarrow x=x_{0} e^{2 s}
$$

$$
\text { parameter }=s
$$

$$
\frac{d y}{d s}=-y t \Rightarrow y=y_{0} e^{-t s}
$$

$$
\left(\frac{x}{x_{0}}\right)^{t}\left(\frac{y}{y_{0}}\right)^{2}=1
$$

Given $t, x_{0}, y_{0} \Rightarrow y(s)=y(x(s))$
e.g. $\left(x_{0}, y_{0}, t\right)=(2,1,4)$

$$
x^{4} y^{2}=16 \Rightarrow x^{2} y=4
$$

$$
\left(\frac{x}{x_{0}}\right)^{t}\left(\frac{y}{y_{0}}\right)^{2}=1
$$

§1.3.2 pathlines

A pathline is the path or trajectory traced out by a particular fluid particle.

§1.3.2 pathlines

Example: $\vec{u}=(2 x,-y t)$

$$
\Rightarrow x(t)=x_{0} \exp \left[2\left(t-t_{0}\right)\right]
$$

$$
\begin{aligned}
& \frac{d x}{d t}=u=2 x \\
& \frac{d y}{d t}=v=-y t
\end{aligned}
$$

$$
\Rightarrow y(t)=y_{0} \exp \left[-\frac{1}{2}\left(t^{2}-t_{0}^{2}\right)\right]
$$

\sim parametric form

$$
\begin{aligned}
\frac{d y}{d t} & =v=-y t \\
\Rightarrow & \frac{d x}{x}=2 d t \Rightarrow \ln \left(\frac{x}{x_{0}}\right)=2\left(t-t_{0}\right)
\end{aligned} \quad t=t_{0}+\frac{1}{2} \ln \left(\frac{x}{x_{0}}\right)
$$

$$
\Rightarrow \frac{d y}{y}=-t d t
$$

$$
\Rightarrow \ln \left(\frac{y}{y_{0}}\right)=-\frac{1}{2}\left(t^{2}-t_{0}^{2}\right)
$$

$$
\begin{aligned}
& \ln \left(\frac{y}{y_{0}}\right)=-\frac{1}{2}\left\{\left[t_{0}+\frac{1}{2} \ln \left(\frac{x}{x_{0}}\right)\right]^{2}-t_{0}^{2}\right\} \\
& \text { Given } t_{0}, x_{0}, y_{0} \Rightarrow y(t)=y(x(t))
\end{aligned}
$$

§1.3.3 streaklines

A streakline is a line in a flow field which is the locus of particles which have earlier passed through a prescribed point.

P1: $(x, y, z)=\left(x_{1}, y_{1}, z_{1}\right)$ at time $=t$
P2: $(x, y, z)=\left(x_{2}, y_{2}, z_{2}\right)$ at time $=t$
P3: $(x, y, z)=\left(x_{3}, y_{3}, z_{3}\right)$ at time $=t$

P1: $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)$ at time $=t_{01}$
P2: $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)$ at time $=t_{02}$
P3: $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)$ at time $=t_{03}$
$(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)$

§1.3.3 streaklines

Example: $\vec{u}=(2 x,-y t)$

$$
\begin{aligned}
& \ln \left(\frac{x}{x_{0}}\right)=2\left(t-t_{0}\right) \\
& \ln \left(\frac{y}{y_{0}}\right)=-\frac{1}{2}\left(t^{2}-t_{0}^{2}\right)
\end{aligned}
$$

streakline: parameter $=\boldsymbol{t}_{\mathbf{0}}$

Given $t, x_{0}, y_{0} \Rightarrow y\left(t_{0}\right)=y\left(x\left(t_{0}\right)\right)$

$$
\ln \left(\frac{y}{y_{0}}\right)=-\frac{1}{2}\left\{t^{2}-\left[t-\frac{1}{2} \ln \left(\frac{x}{x_{0}}\right)\right]^{2}\right\}
$$

Pathline: parameter $=\boldsymbol{t}$
Given $t_{0}, x_{0}, y_{0} \Rightarrow y(t)=y(x(t))$

$$
\ln \left(\frac{y}{y_{0}}\right)=-\frac{1}{2}\left\{\left[t_{0}+\frac{1}{2} \ln \left(\frac{x}{x_{0}}\right)\right]^{2}-t_{0}^{2}\right\}
$$

§1.3.4 material lines

Example:

$$
u=x(1+2 t)
$$

$$
v=y
$$

Steady flows

~ time-independent fields
~ A streamline, pathline, streakline passing through a same reference point correspond to a same curve.

1.4 fluid motion

angular deformation
motion $=$ translation + solid rotation + deformation

1.4.1 Strain rate

Consider a fluid element

$$
\begin{aligned}
& u_{A}=u+\frac{\partial u}{\partial y} \delta y \\
& v_{A}=v+\frac{\partial v}{\partial y} \delta y \\
& u_{C}=u+\frac{\partial u}{\partial x} \delta x \\
& v_{C}=v+\frac{\partial v}{\partial x} \delta x
\end{aligned}
$$

$$
\begin{array}{ll}
\delta \alpha \approx \tan \delta \alpha=\frac{\delta u_{A} \cdot \delta t}{\delta y+\delta v_{A} \cdot \delta t}=\frac{\frac{\partial u}{\partial y} \delta y \cdot \delta t}{\delta y}=\frac{\partial u}{\partial y} \cdot \delta t & \vec{x}_{D}=(x, y) \\
\vec{x}_{A}=(x, y+\delta y) \\
\delta \beta \approx \tan \delta \beta=\frac{\delta v_{C} \cdot \delta t}{\delta x+\delta u_{C} \cdot \delta t}=\frac{\frac{\partial v}{\partial x} \delta x \cdot \delta t}{\delta x}=\frac{\partial v}{\partial x} \cdot \delta t & \vec{x}_{C}=(x+\delta x, y)
\end{array}
$$

1.4.1 Strain rate

Consider a fluid element

Strain rate:

$$
S=\frac{1}{2} \frac{(\delta \beta+\delta \alpha)}{\delta t}=\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)
$$

Rotational rate:

$$
\Omega=\frac{1}{2} \frac{\delta \beta-\delta \alpha}{\delta t}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$

$$
\begin{aligned}
& \delta \alpha=\frac{\partial u}{\partial y} \cdot \delta t \\
& \delta \beta=\frac{\partial v}{\partial x} \cdot \delta t
\end{aligned}
$$

1.4.2 Stress

Stress $\tau_{x y}=\lim _{\delta A_{x} \rightarrow 0} \frac{\delta F_{y}}{\delta A_{x}}$
first subscript : the normal direction of the plane on which the stress acts
second subscript : the direction in which the stress acts
the state of stress at a point : $\left(\begin{array}{lll}\sigma_{x x} & \tau_{x y} & \tau_{x z} \\ \tau_{y x} & \sigma_{y y} & \tau_{y z} \\ \tau_{z x} & \tau_{z y} & \sigma_{z z}\end{array}\right)$
 direction of the stress component and the plane on which it acts are both positive or both negative.

- Normal stress: $\sigma_{x x}, \sigma_{y y}, \sigma_{z z}$

■ Shear stress: $\tau_{x y}, \tau_{y z}, \tau_{z x}, \tau_{y x}, \tau_{z y}, \tau_{x z}$

Surface forces (stress): the force acting between molecules on the surface and molecules outside the fluid particle in the surrounding medium, i.e. intermolecular forces.
Shear stress causes continuous shear deformation in a fluid.
1.4.2 Stress Symmetry $\tau_{x y}=\tau_{y x}$

$$
\begin{aligned}
\text { torque } & =2 \cdot \frac{\delta x}{2} \cdot\left(\tau_{x y} \delta y\right)-2 \cdot \frac{\delta y}{2} \cdot\left(\tau_{y x} \delta x\right) \\
& =\text { inertial moment } \cdot \frac{d^{2} \theta}{d t^{2}}
\end{aligned}
$$

$$
\text { inertial moment } \sim \rho \delta x \delta y \cdot\left(\delta x^{2}+\delta y^{2}\right)
$$

As $\delta x, \delta y \rightarrow 0$:

$$
\begin{gathered}
2 \cdot \frac{\delta x}{2} \cdot\left(\tau_{x y} \delta y\right)-2 \cdot \frac{\delta y}{2} \cdot\left(\tau_{y x} \delta x\right)=0 \\
\tau_{x y}=\tau_{y x}
\end{gathered}
$$

1.4.3 Newtonian fluids

A Newtonian fluid is one where there is a linear relationship between stress and strain-rate. E.g. water, air , gasoline under normal condition.

$$
\begin{aligned}
& \tau_{x y}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=\tau_{y x} \\
& \sigma_{x x}=-(P-\lambda \nabla \cdot \vec{u})+2 \mu \frac{\partial u}{\partial x}
\end{aligned}
$$

μ is called the shear viscosity coefficient.
λ is called the second viscosity.
$\kappa=2 \mu / 3+\lambda$ is called the bulk viscosity $(=0$, Stokes' hypothesis).
$\kappa=0$ for dilute monatomic gases
$\kappa \approx 3 \mu$ for water negligible unless volume expansion is huge.

$$
\lambda \approx-2 \mu / 3
$$

1.4.3 Newtonian fluids

$P_{m} \equiv-\frac{\sigma_{x x}+\sigma_{y y}+\sigma_{z z}}{3}=P-\left(\lambda+\frac{2 \mu}{3}\right)(\nabla \cdot \vec{u}) \quad$ (mechanical pressure)
P : thermodynamic pressure

$$
\kappa=\lambda+\frac{2 \mu}{3} \geq 0 \text { by thermodynamic second law }
$$

- Shear viscosity μ strongly depends on temperature

$$
\begin{aligned}
& \mu \uparrow \text { as } \mathrm{T} \uparrow \text { gasses } \\
& \mu \downarrow \text { as } \mathrm{T} \uparrow \text { liquid }
\end{aligned}
$$

■ weakly depends on pressure
$■$ Kinetic viscosity (momentum diffusivity) $v=\mu / \rho$

1．4．4 non－Newtonian fluids

Newtonian fluids：$\mu=$ constant

$$
\tau_{x y}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)
$$

Non－Newtonian fluids ：mostly due to very large fluid molecules
$>$ dilatant ：deformation rate $\uparrow \Rightarrow \mu \uparrow$
e．g．激粉懸浮夜，砂粒懸浮夜
$>$ pseudo plastic ：deformation rate $\uparrow \Rightarrow \mu \downarrow$
e．g．polymer solution ，紙漿
＞Bingham plastic ：behaves like a solid when the shear stress is less than some yielding stress；behaves like a fluid thereafter
e．g．牙膏
https：／／www．youtube．com
／watch？v＝G1Op＿1yG6IQ

1.4.4 non-Newtonian fluids

$>$ thixotropic : $\mu \downarrow$ as time \uparrow which shear stress keeps constant.
e.g. 油漆
$>$ rheopectic $: \mu \uparrow$ as time \uparrow https://www.youtube.com/watch?v=S8gP3yWsloc
viscoelastic : fluids partially return to their original shape after the shear stress is released.

Remark: viscosity ~ molecular interactions
\sim lead to viscous drag $\left(\tau_{x y}\right)$
\sim cause momentum transfer

Unit of viscosity

$$
\begin{aligned}
& \tau_{x y}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \quad[\mu]=\frac{s \cdot N}{m^{2}}=\frac{s \cdot \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg}}{\mathrm{~s} \cdot \mathrm{~m}} \\
& {\left[\tau_{x y}\right]=\frac{N}{m^{2}} \quad[\mathrm{v}]=\left[\frac{\mu}{\rho}\right]=\frac{\mathrm{kg}}{\mathrm{~s} \cdot \mathrm{~m}} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}=\frac{\mathrm{m}^{2}}{\mathrm{~s}}} \\
& {\left[\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right]=\frac{1}{s}} \\
& \text { e.g. } 1 \mathrm{~atm}, 20^{\circ} \mathrm{C} \\
& \text { air } \quad \begin{array}{l}
\mu=1.8 \cdot 10^{5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} \quad v=1.51 \cdot 10^{5} \mathrm{~m}^{2} / \mathrm{s} \\
\text { water } \quad \mu=10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} \quad v=1.01 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
\text { mercury } \mu=1.5 \cdot 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} \quad v=1.16 \cdot 10^{-7} \mathrm{~m}^{2} / \mathrm{s}
\end{array}
\end{aligned}
$$

1.4.5 Inviscid flow vs Viscous flow

- inviscid flow: $\mu=0$, no inter-molecular forces
- inviscid fluids do not exist; all fluids posses viscosity
- the assumption of $\mu=0$ can simplify analysis and get meaningful results.
- In any viscous flow, the fluid in contact with a solid boundary has the same velocity as the boundary itself.
~nonslip boundary condition
fluids at the belt has the same velocity as that of the belt (plate)

flows at wall have zero velocity

1.4.5 Viscous flow

Streamlines parallel to the plate?

No! $v>0$ for mass conservation.

1.4.5 Inviscid flow vs Viscous flow

inviscid

Inviscid
A: stagnation point

- velocity \uparrow from A to $\mathrm{B} ; \downarrow$ from B to C
- pressure \downarrow from A to $B ; \uparrow$ from C to B
- symmetry \Rightarrow no pressure drag
- inviscid \Rightarrow no shear stress \Rightarrow no viscous drag

1.4.5 Viscous flow

adverse pressure gradient
"streamlining " shape \Rightarrow reduce adverse pressure gradient
\Rightarrow delay the separation
\Rightarrow reduce pressure drag
\Rightarrow viscous drag increases (\because surface increases)
\Rightarrow net drag reduced

1.5 Dimensional Analysis

Buckingham Pi Theorem

~ give suggestions for possible grouping of related parameters such that the groups of parameters, not the parameters themselves, are the key factors determining the behaviors of the given system.

dimensions and units

- A dimension is the measure by which physical variable is expressed quantitatively,
e.g. length, time, temperature, force, torque,......
- A unit is a particular way of attaching a number to a dimension
e.g. force: $[F]$ Newton, $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}, \mathrm{lbf}, \ldots$

$$
\text { time: }[t] \quad \text { second, minute, hour, day, } \ldots
$$

- Primary dimensions: those dimensions which basically express all observable physical quantities and are independent from each other (none of them be measured in terms of any combination of the others).
e.g. $\{$ mass, time, length, temperature, electric field $\}=\{M, t, L, T \ldots \ldots$.
or $\{$ force, time, length, temperature, electric field $\}=\{F, t, L, T \ldots \ldots\}$

1.5 Dimensional Analysis - Buckingham Pi Theorem

Given a physical problem and

- Let \boldsymbol{m} be the minimum number of independent dimensions required to specify the dimensions of all the parameters $q_{1}, q_{2} \ldots \ldots, q_{n}$.
- Then these \boldsymbol{n} parameters can be grouped into $\boldsymbol{n}-\boldsymbol{m}$ independent dimensionless parameters, Π parameters, such that

$$
\begin{aligned}
& \Pi_{1}=f\left(\Pi_{2}, \Pi_{3}, \ldots \ldots, \Pi_{n-m}\right) \\
& \quad \text { or } \\
& F\left(\Pi_{1}, \Pi_{2}, \Pi_{3}, \ldots \ldots, \Pi_{n-m}\right)=0
\end{aligned}
$$

\sim requirement of consistency of dimension \sim

Example 1:

$$
\begin{aligned}
& \Delta P=P-P_{a t m}=f(\rho, g, \mathrm{~h}) \quad \mathrm{n}=4 \\
& {[\Delta P]=\left[\frac{F}{L^{2}}\right]=\frac{\mathrm{N}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg}}{\mathrm{~m} \cdot \mathrm{~s}^{2}}} \\
& {[\rho]=\left[\frac{\mathrm{M}}{L^{3}}\right]=\frac{\mathrm{kg}}{\mathrm{~m}^{3}}} \\
& {[g]=\left[\frac{L}{t^{2}}\right]=\frac{\mathrm{m}}{\mathrm{~s}^{2}}} \\
& {[\mathrm{~h}]=[L]=m} \\
& \mathrm{n}-\mathrm{m}=1
\end{aligned}
$$

$$
\begin{array}{ll}
\Pi=\Delta P \cdot \rho^{a} g^{b} h^{c} & F(\Pi)=0 \\
1=\left(\frac{\mathrm{kg}}{\mathrm{~m} \cdot \mathrm{~s}^{2}}\right)\left(\frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right)^{a}\left(\frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)^{b}(m)^{c} & \Rightarrow \Pi=\mathrm{constant} \\
\mathrm{~kg}: \quad 1+a=0 & \frac{\Delta P}{\rho g h}=\mathrm{constan} \\
m:-1-3 a+b+c=0 & \\
s:-2-2 b=0 & \Delta P \propto \rho g h \\
a=b=c=-1 & \\
\Pi=\Delta P \cdot \rho^{-1} g^{-1} h^{-1} &
\end{array}
$$

Example 2:

$$
\left.\begin{array}{rlr}
& \begin{array}{ll}
\text { Wanted: drag acting on a moving sphere in } \\
\text { a stationary fluid } \\
F & =f(\mathrm{D}, \mathrm{U}, \rho, \mu)
\end{array} \\
\Pi_{1}=F \cdot \rho^{a_{1}} D^{b_{1}} U^{c_{1}} & {[F]=N=\mathrm{kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} & \mathrm{~m}=3 \\
=F / \rho U^{2} D^{2} & {[D]=[L]=m} & \mathrm{n}-\mathrm{m}=2
\end{array}\right\} \begin{aligned}
\Pi_{2} & =\mu \cdot \rho^{a_{2}} D^{b_{2}} U^{c_{2}} \\
& {[U]=\left[\frac{L}{t}\right]=\frac{m}{\mathrm{~s}} }
\end{aligned}
$$

Dimensional Analysis - Buckingham Pi Theorem

unknown, determined by experiments

- investigate the effect of different values of $\mu / \rho U D$ on $F / \rho U^{2} D^{2}$ instead of effects of individual parameter ρ, U, D, or μ
- goal 1 (reduce number of investigated parameters)
- goal 2 (model flow vs. real flow)
- Two flows may be involved with different ρ, U, D, or μ but have the same value of $\mu / \rho U D$
\Rightarrow must have the same value of $F / \rho U^{2} D^{2}$

$$
\left(\frac{\mu}{\rho U D}\right)_{\text {model }}=\left(\frac{\mu}{\rho U D}\right)_{\text {real }} \Rightarrow\left(\frac{F}{\rho U^{2} D^{2}}\right)_{\text {model }}=\left(\frac{F}{\rho U^{2} D^{2}}\right)_{\text {real }}
$$

Example 3:

	parameter	symbol	unit
	Lift per span	L	$\mathrm{~N} / \mathrm{m}=\mathrm{kg} / \mathrm{s}^{2}$
$\mathrm{n}=8$			
$\mathrm{~m}=3$	Angle of attack (e.g. chord)	α	
5Π 's!	Freestream velocity	U_{∞}	m / s
	Freestream density	ρ_{∞}	$\mathrm{kg} / \mathrm{m}^{3}$
	Freestream viscosity	μ_{∞}	$\mathrm{kg} / \mathrm{m} . \mathrm{s}$
	Freestream speed of sound gravity	a_{∞}	m / s
		g	$\mathrm{~m} / \mathrm{s}^{2}$

Example 3:

$$
\begin{aligned}
& \Pi_{1}=\frac{L}{\frac{1}{2} \rho_{\infty} U_{\infty}^{2} C} \equiv C_{L}=\text { lift coefficient } \\
& \Pi_{2}=\alpha=\text { angle of attack } \\
& \Pi_{3}=\frac{\rho_{\infty} U_{\infty} C}{\mu_{\infty}}=\mathrm{Re}=\text { Reynolds number } \\
& \Pi_{4}=\frac{U_{\infty}}{a_{\infty}}=M a=\text { Mach number } \\
& \Pi_{5}=\left(\frac{U_{\infty}^{2}}{g C}\right)^{1 / 2}=\text { Froude } \#=\mathrm{Fr} \\
& C_{L}=C_{L}(\alpha, \mathrm{Re}, \mathrm{Ma}, \mathrm{Fr})
\end{aligned}
$$

Okulov V.L., Sorensen J.N ., van Kuik G.A.M. Development of the optimum rotor theories. Moscow-Izhevsk: R\&C Dyn., 2013. 120 p. ISBN 978-5-93972-957-4.
was translated in English of by interpreters of Institute Termophysics, Novosibirsk, Russia

Example 4:

$$
\Pi_{1}=\frac{T}{\frac{1}{2} \rho_{\infty} n^{2} D^{4}} \equiv c_{T}=\text { thrust coefficient }
$$

$$
\Pi_{2}=\frac{\rho_{\infty} D^{2} n}{\mu_{\infty}} \sim \frac{\rho_{\infty} D V_{\text {tip }}}{\mu_{\infty}}=\operatorname{Re}=\text { Reynolds number }
$$

$$
\Pi_{3}=\frac{V_{0}}{n D}=J=\text { advance ratio }
$$

$$
c_{T}=c_{T}(\mathrm{Re}, J)
$$

Geometric similarity: (length scale)

- model and prototype be the same shape and all linear dimensions f the model be related to corresponding dimensions of the prototype by a constant scale factor.

Kinematic similarity: (length scale+time scale)

- velocities at corresponding points are in the same direction and are related in magnitude by a constant scale factor.
\Rightarrow streamline patterns related by a constant scale factor
Dynamic similarity: (length scale + time scale+ force scale)
- two flows have force distributions such that identical types of forces are parallel and are related in magnitude by a constant scale factor at all corresponding points.

To achieve "Dynamic similarity" between a real flow and its model flow, all but one of these Π-parameters must be duplicated.

$$
\begin{aligned}
& \text { Only if }\left(\Pi_{2}\right)_{\text {model }}=\left(\Pi_{2}\right)_{\text {real }} \\
& \left(\Pi_{3}\right)_{\text {model }}=\left(\Pi_{3}\right)_{\text {real }} \\
& \left(\Pi_{n-m}\right)_{\text {model }}=\left(\Pi_{n-m}\right)_{\text {real }} \\
& \text { then }\left(\Pi_{1}\right)_{\text {model }}=\left(\Pi_{1}\right)_{\text {real }}
\end{aligned}
$$

In the lab, to ensure dynamic similarity, i.e.

$$
\vec{F}(x, y, z)_{\text {model }} \propto \vec{F}\left(x_{c}, y_{c}, z_{c}\right)_{\text {real }}
$$

one requires
corresponding point
geometric similarity
and kinematic similarity $\vec{u}(x, y, z)_{\text {model }} \propto \vec{u}\left(x_{c}, y_{c}, z_{c}\right)_{\text {real }}$ everywhere

Remark: At least make important Π 's in the same; others are made up in some other ways such as analysis, experimental measurement, etc. Reasonable results can be still possible.

1.6 Dimensionless parameters

inertial force per unit volume $\sim \rho d u / d t \sim \rho \frac{U}{L / U} \sim \rho \frac{U^{2}}{L}$
pressure force per unit volume $\sim \frac{A \Delta P}{A \cdot L} \sim \frac{\Delta P}{L}$
friction force per unit volume $\sim \frac{A \cdot \tau_{x y}}{A \cdot L} \sim \frac{\mu \frac{\partial u}{\partial y}}{L} \sim \frac{\mu U}{L^{2}}$
gravity force per unit volume $\sim \rho g$

> inertial force $\sim \rho U^{2} / L$ pressure force $\sim \Delta P / L$ friction force $\sim \mu U / L^{2}$
> gravity force $\sim \rho g$

1.6 Dimensionless parameters

(i) Reynolds number $=R e \equiv \frac{\text { inertial effect }}{\text { viscous effect }} \equiv \frac{\rho U^{2} / L}{\mu U / L^{2}}=\frac{\rho U L}{\mu}=\frac{L^{2} / v}{L / U}$
$R e \ll 1$: viscous diffusion speed \gg convection speed

viscous effect >> inertial effect
\Rightarrow ignore convective term
\Rightarrow Stokes flows
$R e \gg 1:$ convection speed \gg viscous diffusion speed
As $R e \rightarrow 0$, can we ignore viscous force? No!! The larger Re, the thinner region (boundary layer) is affected by the viscous effect.
cases of $\mu \rightarrow 0 \neq$ cases of $\mu=0$
i.e. The case $\mu=0$ is a singularity

laminar vs turbulent

Reynolds experiments: fixed diameter of the pipe
small velocity

water	
flow	dye

dye remains in a single filament little dispersion little mixing
velocity signal
laminar: smooth easier to handle, analytic

dye stretched, twisted breaks strong dispersion, strong mixing
velocity signal
whrmarnor
turbulent: random
most of cases, empirical time
large $R e \equiv \frac{U L}{V}$

1.6 Dimensionless parameters

(ii) Mach number $=M \equiv \frac{\text { flow speed }}{\text { sound speed }}=\frac{U}{a}$

$$
\begin{aligned}
& \text { sound speed } a=\sqrt{\frac{d P}{d \rho}} \\
& M^{2}=\frac{U^{2}}{(d P / d \rho)}=\frac{\rho U^{2} L^{2}}{\rho(d P / d \rho) L^{2}}=\frac{\rho U^{2} / L \cdot L^{3}}{\rho(d P / d \rho) L^{2}}
\end{aligned}
$$

inertial force $\sim \rho U^{2} / L$
pressure force $\sim \Delta P / L$ gravity force $\sim \rho g$
friction force $\sim \mu U / L^{2}$

$$
=\frac{\text { inertial force }}{\text { force required for compressibility }}
$$

incompressible : force required for compressibility >>1

$$
\text { sound speed } a=\sqrt{\frac{d P}{d \rho}} \gg 1 \quad \Rightarrow \boldsymbol{M} \ll 1
$$

in general, $\mathrm{M} \leq 0.3 \Rightarrow$ approximately incompressible
subsonic flow: $\mathrm{M}<1$
sonic flow : $\mathrm{M}=1$
supersonic flow : $\mathrm{M}>1$
hypersonic flow: $\mathrm{M}>5$

1.6 Dimensionless parameters

(iii) Euler number $E u \equiv \frac{\text { pressure force }}{\text { inertial force }}=\frac{\Delta P / L}{\frac{1}{2} \rho U^{2} / L}=\frac{\Delta P}{\frac{1}{2} \rho U^{2}}$
also called"pressure coefficient "(Cp)
(iv) cavitation number $=C a \equiv \frac{P-P_{v}}{\frac{1}{2} \rho U^{2}}$

$$
P_{v}=\text { vapor pressure of the liquid fluid }
$$

(v) Froude number $=F r=\left(\frac{\text { inertial force }}{\text { gravity force }}\right)^{\frac{1}{2}}$

$$
=\left(\frac{\rho U^{2} / L}{\rho g}\right)^{\frac{1}{2}}=\left(\frac{U^{2}}{g L}\right)^{\frac{1}{2}}=\frac{U}{\sqrt{g L}}
$$

1.6 Dimensionless parameters

(vi) Weber number $=W e=\frac{\text { inertial force }}{\text { surface tension force }}=\frac{(\rho U / L) \cdot L^{3}}{\sigma \cdot L}=\frac{\rho U L}{\sigma}$
$\sigma=$ surface tension force per unit length

版權聲明

No．	作品	版㩲標示	隶源
1.	$\pm=$	［1］	HELDERPAD／Gas Flow Conductance／Vacuum Pressure Ranges， https：／／helderpad．com／2017／03／02／gas－flow－conductance／， 本網站係以著作權法第 52 ， 65 條合理使用本件作品，2022／09／21 。
2.		（1）	來源：熊年祿等《電離層物理概論》，武漢大學出版社，1999．5，本網站係以著作權法第 52 ， 65 條合理使用本件作品。
3.		（0）	NASA／Student Airfoil Interactive ， https：／／www1．grc．nasa．gov／beginners－guide－to－aeronautics／foilsimstudent／， 本網站係以著作權法第 52 ， 65 條合理使用本件作品，2022／09／21。
4.		（1）	THE STREAMLINES ， https：／／www．av8n．com／irro／profilo1 e．html， 本網站係以著作權法第52，65 條合理使用本件作品，2022／09／21。

版權聲明

No．	作品	版權標示	來源
5.		\square	Okulov V．L．，Sorensen J．N ．，van Kuik G．A．M．Development of the optimum rotor theories． Moscow－Izhevsk：R\＆C Dyn．，2013． 120 p．ISBN 978－5－93972－957－4． was translated in English of by interpreters of Institute Termophysics，Novosibirsk，Ru5s3sia，本網站係以著作權法第52，65條合理使用本件作品。
如有侵權，敬請告知，謝謝。 E－mail：ntuocw＠ntu．edu．tw／Tel：＋886－2－3366－3367\＃584			

