











1924 de Broglie Particle also has wave nature  $m = \frac{h}{\lambda v} \qquad (cf: m = \frac{h}{\lambda c})$ de Broglie equation:  $\lambda = \frac{h}{mv}$ Ex.  $m_e = 9.11 \times 10^{-31} \text{ kg}$ If traveling at a speed of  $1.0 \times 10^7 \text{ m/s}$   $\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34} \text{ kgm}^2/\text{s}}{(9.11 \times 10^{-31} \text{ kg})(1.0 \times 10^7 \text{ m/s})}$   $= 7.3 \times 10^{-11} \text{ m}$ In the range of X-ray









For H: 
$$n = 5 \Rightarrow n = 2$$
 blue  
 $n = 4 \Rightarrow n = 2$  green  
 $n = 3 \Rightarrow n = 2$  red  
Overall:  $\Delta E = E_{\text{final}} - E_{\text{initial}} = -2.178 \times 10^{-18} \text{ J} \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{f}^{2}}\right)$   
 $n = 1 \Rightarrow \text{ ground state}$   
From  $n = 1 \Rightarrow n = \infty \Rightarrow$  remove e- from the ground state  
Only works for H atom  
 $\Rightarrow$  can not be correct  
The idea of quantization is influential









\* Heisenberg's uncertainty principle In fact, the exact path of e can not be determined  $\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$ Uncertainty of particle position  $\Delta (mv): uncertainty of particle momentum$ 









| ✓ The angular quantum number: <i>l</i> (integer)<br>For each <i>n</i> , <i>l</i> = 0 — <i>n</i> −1<br>Related to the angular momentum of an e-<br>Determines the shape |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| l = 0 s orbital<br>l = 1 p orbital<br>l = 2 d orbital<br>l = 3 f orbital                                                                                               |               |
| $n = 1  l = 0  \Rightarrow  1s$ $n = 2  l = 0  \Rightarrow  2s$ $n = 2  l = 1  \Rightarrow  2p$                                                                        | 1 Contraction |

✓ The magnetic quantum number:  $m_l$  (integer)  $m_l = l.....-l$  (including 0) Related to the orientation in space  $l = 1 \implies m_l = 1, 0, -1 \implies p_x, p_y, p_z$   $l = 2 \implies m_l = 2, 1, 0, -1, -2 \implies d_{z^2}, d_{x^2-y^2}, d_{xy}, d_{yz}, d_{zx}$ (© Summary n determines the total E:  $E_n = -\frac{1}{n^2}(\frac{Z^2e^2}{2a_0})$  l determines the square of the total angular momentum:  $M^2 = l(l+1)\hbar^2$  $m_l$  determines the z component of the angular momentum:

 $M_z = m\hbar$ 





























| [N<br>  <sub>1</sub><br>(k                                                                                                        | le]3s¹<br>Na<br>495<br>J/mol) | 3s²<br>Mg<br>735 | 3s <sup>2</sup> 3p <sup>1</sup><br>Al<br>580 | 3s²3p²<br>Si<br>780 | 3s²3p³<br>P<br>1060 | 3s <sup>2</sup> 3p <sup>4</sup><br>S<br>1005 | 3s²3p⁵<br>Cl<br>1255 | 3s <sup>2</sup> 3p <sup>6</sup><br>Ar<br>1527 |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|----------------------------------------------|---------------------|---------------------|----------------------------------------------|----------------------|-----------------------------------------------|--|
| General trend increasing<br>Shielding effect of core e⁻ ⇔ similar<br>Increasing of Z <sup>+</sup> <sub>eff</sub> ⇔ more important |                               |                  |                                              |                     |                     |                                              |                      |                                               |  |
|                                                                                                                                   |                               |                  |                                              |                     |                     |                                              |                      |                                               |  |
|                                                                                                                                   |                               |                  |                                              |                     |                     |                                              |                      |                                               |  |
|                                                                                                                                   |                               |                  |                                              |                     |                     |                                              |                      |                                               |  |







