䒼灣大䵓化㩓系
NTU © hemistry
※ Electromagnetic radiation（Maxwell，1864） （nature of light）
Composed of perpendicular electric field and magnetic field

$$
\text { If } \Delta t=1 \mathrm{sec} \Rightarrow 1 \text { cycle per second }=1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}
$$

$$
\lambda v=\mathrm{c} \quad \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

1901 Max Planck postulate
The energies are discrete and are integers of $h \nu$ $h=6.626 \times 10^{-34} \mathrm{Js}$

Planck constant
Energies are gained or lost in $n h v$

$$
\Delta \mathrm{E}=n h \nu
$$

\Rightarrow Now the black body radiation profile can be derived
\Rightarrow Meaning：
The energy of light is quantized
Energy exchanged in whole＂quanta＂（quantum是複數）

1887 Hertz
Light strikes on metal $\quad \Rightarrow \quad e^{-}$emitted
A minimum E required $\left(v_{0}\right)$

$$
\begin{array}{ll}
v<v_{0} & \text { no e } e^{-} \\
v>v_{0} & \text { yes }
\end{array}
$$

Light intensity increases the number of e^{-} but not the E of e^{-}

1905 Einstein

\checkmark Electromagnetic radiation is quantized

$$
\mathrm{E}_{\text {photon }}=h \nu=h \mathrm{c} / \lambda
$$

Predicted:

$$
h v-h v_{0}=K E_{e^{-}}=1 / 2 \mathrm{mv}^{2} \quad \begin{aligned}
& \text { Unrelated to } \\
& \text { light intensity }
\end{aligned}
$$

Work function (P): The amount of work that the e^{-}must produce on leaving the body

Confirmed by Hughes, Richardson and Compton (1912) and Millikan (1916)
$\checkmark \quad$ Photon has mass (not a rest mass)

$$
\mathrm{m}=\frac{\mathrm{E}}{\mathrm{c}^{2}}=\frac{h}{\lambda \mathrm{c}} \quad \text { or } \mathrm{E}=\mathrm{mc}^{2}
$$

1922 Compton: Confirmed by collision of X-rays and e^{-}
$\Rightarrow \quad$ Light has dual nature: wave and particle

1924 de Broglie
Particle also has wave nature

$$
m=\frac{h}{\lambda v} \quad\left(c f: m=\frac{h}{\lambda c}\right)
$$

de Broglie equation: $\lambda=\frac{h}{\mathrm{mv}}$
Ex. $\quad m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
If traveling at a speed of $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
$\lambda=\frac{h}{\mathrm{mv}}=\frac{6.626 \times 10^{-34} \mathrm{kgm}^{2} / \mathrm{s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}$ $=7.3 \times 10^{-11} \mathrm{~m}$

In the range of X -ray

1927 Davison and Germer (Bell lab)
A beam of e^{-}hitting a nickel crystal
\Rightarrow diffraction occurs
Verified the wave properties of e^{-}

Conclusion
All matter exhibits both particulate and wave properties
Larger particle
Photons
More particulate-like More wave-like
※ The atomic spectrum of hydrogen

Atomic structure
Thomson：electron Rutherford：nucleus
Atomic spectrum of H
H_{2} in a high voltage spark $\Rightarrow \quad$ excited H atom
$\Rightarrow \quad$ emits light

Line spectrum of H
\Rightarrow The energy of e^{-}in H atom is quantized
$\Delta \mathrm{E}=h \nu=h \mathrm{c} / \lambda$
From one energy state to another

喜䇾大㓎化學系 NTU Chemistry

※ The Bohr model
nucleus（with atomic number Z ）
1913 Bohr
e^{-}circles around the nucleus （in a velocity of v ）

Problems of classical physics：
accelerating charged particle \Rightarrow radiate energy
\Rightarrow lose E
\Rightarrow drops into nucleus

Bohr's model was based on experimental results
Proposed the angular momentum of the electron could occur only in certain increment
$m v r=n \hbar \quad \hbar=h / 2 \pi$
$n=1,2,3 \ldots$.
$\Rightarrow E=-2.178 \times 10^{-18}\left(Z^{2} / n^{2}\right) \mathrm{J}$

One mole with $n=1$
$\Rightarrow E=-13.6 \mathrm{eV}=-1310 \mathrm{~kJ}$ per mol
$n=\infty \Rightarrow E=0$ (a reference point)
-13.6 \qquad

For $\mathrm{H}: n=5 \rightarrow n=2 \quad$ blue
$n=4 \rightarrow n=2$ green
$n=3 \rightarrow n=2$ red
Overall: $\Delta \mathrm{E}=\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }}=-2.178 \times 10^{-18} \mathrm{~J}\left(\frac{1}{n^{2}}-\frac{1}{n^{2}}\right)$
$n=1 \Rightarrow$ ground state
From $n=1 \rightarrow n=\infty \Rightarrow$ remove e^{-}from the ground stateProblems with Bohr's model
Only works for H atom
$\Rightarrow \quad$ can not be correct
The idea of quantization is influential of the atom

1925-1926
Heisenberg, de Broglie, Schrödinger
$\Rightarrow \quad$ Wave mechanics or quantum mechanics
© A simple model: standing wave of a confined string

```
    \longmapsto ~ L e n g t h ~ = ~
```


λ : wave length
$1 / 2 \lambda$

A node (節點): zero amplitude
With one node:
$\lambda(=2 / 2 \lambda) \quad \lambda$ is smaller \Rightarrow energy is higher

$$
\mathrm{E}=h \nu=h \mathrm{c} / \lambda
$$

With two nodes:
λ is even smaller $\Rightarrow E$ is even higher

There are limitations: $l=n(1 / 2 \lambda)$ or $\lambda=2 l / n$

$$
\begin{aligned}
& n=1, \lambda=2 l \\
& n=2, \lambda=l
\end{aligned}
$$

If in a circle

Limitations: $2 \pi r=n \lambda \quad n=1,2,3 \ldots \ldots$
Apply de Broglie equation:

$$
\begin{aligned}
\lambda=\frac{h}{\mathrm{mv}} & \Rightarrow 2 \pi \mathrm{r}=n \lambda=\frac{n h}{\mathrm{mv}} \\
& \Rightarrow \mathrm{mvr}=\frac{n h}{2 \pi}=n \hbar
\end{aligned}
$$

※ Schrödinger equation	NTU Ehemistry
$\hat{\mathrm{H}} \Psi=\mathrm{E} \Psi$ Energy of the atom: Wave function: des An operator called	$P E+K E$ of e^{-} cribe e^{-}position in space Hamiltonian
\Rightarrow Found many solutions	cf. for 1 s $\begin{aligned} & \Psi=2\left(\frac{Z}{\mathrm{a}_{0}}\right)^{3 / 2} \mathrm{e}^{-\rho / 2} \\ & \mathrm{a}_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{\mathrm{~m}_{\mathrm{e}} e^{2}} \quad \rho=\frac{2 Z \mathrm{r}}{\mathrm{a}_{0}} \end{aligned}$

※ Heisenberg's uncertainty principle

NTU © hemistry

In fact, the exact path of e^{-}can not be determined
$\Delta x \cdot \Delta p \geqq \frac{h}{4 \pi}$

Uncertainty of
particle position momentum $\Delta(\mathrm{mv})$: uncertainty of particle momentum
※ Physical meaning of a wave function

Wave function Ψ :
Describes the state of a system
Contains information about all the properties of the system that are open to experimental determination
© Born interpretation:

$$
\frac{\Psi_{1}{ }^{2}}{\Psi_{2}{ }^{2}}=\frac{N_{1}}{N_{2}}
$$

Ψ^{2} : a function about probability distribution
Postulate:
The probability that a particle will be found in the volume element $d \tau$ at the point r is proportional to $|\Psi(r)|^{2} d \tau$

Ex. 1s orbital for H atom

Real interest:
Finding total probability of e^{-}at a particular distance
Distance from the nucleus

The real probability distribution:

$$
\Psi^{2} \cdot\left(4 \pi r^{2}\right)
$$

The most probable distance to find e^{-} \Rightarrow Same as based on Bohr model ($n=1$)
\Rightarrow Called Bohr radius
Summary

Bohr model:
a fixed path
Quantum mechanics: a probability

Normally the pictorial boundary shows 90\% probability inside the boundary
※ Quantum numbers
\checkmark The principal quantum number: n (integer) $n=1,2,3 \ldots \ldots$
Related to the size and E
$n \uparrow$
$r \uparrow$
$E \uparrow$
Average distance
\checkmark The angular quantum number: l (integer)
For each $n, l=0-n-1$
Related to the angular momentum of an e^{-} Determines the shape
$l=0 \quad$ s orbital
$l=1 \quad$ p orbital
$l=2 \quad$ d orbital
$l=3 \quad \mathrm{f}$ orbital
$n=1 \quad l=0 \Rightarrow 1 s$
$n=2 \quad l=0 \Rightarrow 2 \mathrm{~s}$
$n=2 \quad l=1 \Rightarrow 2 p$
\checkmark The magnetic quantum number: m_{l} (integer)

$$
\left.m_{l}=l \ldots \ldots-l \text { (including } 0\right)
$$

Related to the orientation in space

$$
\begin{aligned}
& l=1 \Rightarrow m_{l}=1,0,-1 \\
& l=2 \Rightarrow m_{l}=2,1,0,-1,-2 \Rightarrow \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{~d}_{\mathrm{z}} \\
& \mathrm{~d}^{2}-\mathrm{y}^{2}, \mathrm{~d}_{\mathrm{xy}}, \mathrm{~d}_{\mathrm{yz}}, \mathrm{~d}_{\mathrm{zx}}
\end{aligned}
$$

© Summary
n determines the total $E: \quad E_{n}=-\frac{1}{n^{2}}\left(\frac{Z^{2} e^{2}}{2 a_{0}}\right)$
l determines the square of the total angular momentum:

$$
M^{2}=l(l+1) \hbar^{2}
$$

m_{l} determines the z component of the angular momentum:

$$
M_{z}=m \hbar
$$

\checkmark Probability distribution
of p orbitals

Contain two lobes

Three subshells

\checkmark d subshells: 5 orbitals

$$
\begin{array}{lll}
m_{l}=0 & \pm 1 & \pm 2 \\
\mathrm{~d}_{\mathrm{z}^{2}} & \mathrm{~d}_{\mathrm{xz}} & \mathrm{~d}_{\mathrm{xy}} \\
& \mathrm{~d}_{\mathrm{yz}} & \mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}
\end{array}
$$

$d_{x y}$

$d_{x z}$

$d_{y z}$

$d_{x^{2}-y^{2}}$

\checkmark The energy level
For H atom: E is determined by n
same $n \Rightarrow$ same E
\Rightarrow these orbitals are degenerate

※ Electron spin and Pauli principle
\checkmark In fact, a spin quantum number (m_{s}) exists

$$
m_{\mathrm{s}}=+1 / 2 \text { or }-1 / 2
$$

Electron has its own angular momentum
\Rightarrow Imagine the electron as spinning on its own axis like earth
\Rightarrow Behaves like a tiny magnet
\checkmark Pauli principle
In a given atom, two electrons can not have the same n, l, m_{l} and m_{s}
$\Rightarrow \quad$ In the same orbital, n, l, and m_{l} must be the same
$\Rightarrow \quad m_{\mathrm{s}}$ must be different
※ Polyelectronic atoms
量䇾大學化学系
NTU ©hemistry

Very complicate
Problem：Electrons influence each other

Ex． He
e^{-}
$+2 e^{-}$
$\downarrow-\mathrm{e}^{-} \quad 2372 \mathrm{~kJ}$
He^{+}
The effective charge approximation （A very rough model）

Considering $\mathrm{e}^{-}-\mathrm{e}^{-}$repulsion as reducing the nuclear charge
In other words：
The electron is shielded（screened）from the nuclear charge by the other electrons

Ex．Hypothetical He

Becomes a one e^{-}system
\Rightarrow Leads to hydrogen like orbitals
\Rightarrow But the sizes and energies are different from that of H atom
\checkmark In polyatomic atoms

$$
\mathrm{E}_{\mathrm{ns}}<\mathrm{E}_{\mathrm{np}}<\mathrm{E}_{\mathrm{nd}}<\mathrm{E}_{\mathrm{nf}}
$$

2 s is more penetrating

Most probable distance is smaller for $2 p$
But $E_{2 s}<E_{2 p}$ because of the penetrating effect of $2 s$
Similarly， $\mathrm{E}_{4 \mathrm{~s}}<\mathrm{E}_{3 \mathrm{~d}}$
More penetrating
※ The aufbau principle（遞建原理） and the periodic table

1869 Mendeleev
The first periodic table
A correlation of chemical properties and AW of elements
（O）The periodicity based on quantum mechanics
The aufbau principle：
As the atomic number increased the electrons are added in order

Elements with the same valence electronic configuration \Rightarrow Show similar chemical behavior
\Rightarrow Grouped in the vertical column
$\mathrm{Li} \quad[\mathrm{He}] 2 \mathrm{~s}^{1}$
$\mathrm{Na} \quad[\mathrm{Ne}] 3 \mathrm{~s}^{1}$
$\mathrm{K} \quad[\mathrm{Ar}] 4 \mathrm{~s}^{1}$
Some notes

1. $(n+1) s$ before $n d$
2. After lanthanide (La: $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 5 \mathrm{~d}^{1}$)
\Rightarrow starts to fill in 4f
Ce: $[X e] 6 s^{2} 4 f^{1} 5 d^{1}$
\Rightarrow the lanthanide series
3. After actinide (Ac: $[R n] 7 s^{2} 6 d^{1}$)
\Rightarrow fill in $5 f$
\Rightarrow actinide series

lanthanides: actinides:

f block
4. Group labels: 1A, 2A. 8A

The total number of valance e^{-}
5. $1 \mathrm{~A}-8 \mathrm{~A}$: the main group elements
※ Periodic trends in atomic properties

 NTU ©hemistry

© Ionization energy
$\quad \mathrm{X}(g) \rightarrow \mathrm{X}^{+}(g)+\mathrm{e}^{-} \quad$ energy change
Atom
or ion Gas phase

Sometimes expressed as ionization potential
unit: $\mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$\sim 23 \mathrm{kcal} / \mathrm{mol}$
~96 kJ/mol

Ex. AI: $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$

$$
\begin{array}{ll}
\mathrm{Al}(g) \rightarrow \mathrm{Al}^{+}(g)+\mathrm{e}^{-} & \mathrm{I}_{1}=580 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{I}_{2}=1815 \\
& \mathrm{I}_{3}=2740 \\
\mathrm{I}_{4}=11600
\end{array}
$$

I_{1} : The first ionization E
\Rightarrow Removes the highest-E e-
\Rightarrow Reflect the E of the orbital
I_{2} : The second ionization E
\Rightarrow The charge effect comes to play
I_{4} : very large (Al^{3+} : $\left.[\mathrm{Ne}]\right)$
\Rightarrow Starts to remove core e^{-}
$[\mathrm{Ne}] 3 s^{1} \quad 3 s^{2} \quad 3 s^{2} 3 p^{1} 3 s^{2} 3 p^{2} \quad 3 s^{2} 3 p^{3} 3 s^{2} 3 p^{4} 3 s^{2} 3 p^{5} 3 s^{2} 3 p^{6}$
$\mathrm{Na} \quad \mathrm{Mg} \quad \mathrm{Al} \quad \mathrm{Si} \quad \mathrm{P} \quad \mathrm{S} \quad \mathrm{Cl} \quad \mathrm{Ar}$

| I_{1} | 495 | 735 | 580 | 780 | 1060 | 1005 | 1255 | 1527 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(kJ/mol)
General trend \rightarrow increasing

Shielding effect of core $\mathrm{e}^{-} \Rightarrow$ similar Increasing of $Z^{+}{ }_{\text {eff }} \Rightarrow$ more important

Special case
Al: the lower value is due to the shielding effect of $3 s^{2}$
S : the lower value is due to pairing energy

$$
\text { (} \mathrm{e}^{-}-\mathrm{e}^{-} \text {repulsion) }
$$

Down a group

	$\mathrm{I}_{1}(\mathrm{~kJ} / \mathrm{mol})$	size	
Li	520		
Na	495		
K	419	decreasing	
Rb	409		increasing
Cs	382		

$$
\mathrm{Z}^{+} \text {eff } \text { similar } \Rightarrow \text { Size is more important }
$$Electron affinity

$$
\mathrm{X}(g)+\mathrm{e}^{-} \rightarrow \mathrm{X}^{-}(g) \quad \text { energy change }
$$

$$
\Delta \mathrm{H}(-) \text { : exothermic }
$$

In a period: atomic number \uparrow
energy change: more negative
Ex. C
-122.5
N
--
-141.4 (kJ/mol) not available
 $1 s^{2} 2 s^{2} 2 p^{4}$
$1 s^{2} 2 s^{2} 2 p^{5}$

$$
\mathrm{Z}^{+}{ }_{\text {eff }} \longrightarrow \text { increase }
$$

N^{-}: unstable due to $\mathrm{e}^{-}-\mathrm{e}^{-}$repulsion

Down a group

	kJ/mol	
F	-327.8	- F is too small$\mathrm{e}^{-}-\mathrm{e}^{-}$repulsio
Cl	-348.7	
Br	-324.5	
1	-295.2	
		negative

© Atomic radius
difficult to determine just like orbitals

Usual way

