1.6 Span of a Set of Vectors

Definition

For a nonempty set $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ of vectors in \mathcal{R}^n , we define the span of S to be the set of all linear combinations of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ in \mathcal{R}^n . This set is denoted by Span S or Span $\{u_1, u_2, ..., u_k\}$.

- Why did we (mathematicians) define the term "Span"?
	- When we want to say

"**v** is a linear combination of \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 ," we can simply say

$$
\mathbf{v}\in \text{Span }\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}
$$

Span $S = \{c_1u_1 + c_2u_2 + \cdots + c_ku_k : c_1, c_2, ..., c_k \in \mathcal{R}\}\$

Example:
\n
$$
S_{1} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, S_{2} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \right\}, \text{Span } S_{1} = \text{Span } S_{2}
$$
\n
$$
S_{3} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}, S_{4} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\},
$$
\n
$$
\Rightarrow \text{Span } S_{3} = \text{Span } S_{4} = \mathcal{R}^{2}
$$
\nnonparallel vectors

Example: Consider the standard vectors in **R**3.

$$
e_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$
Span{ $\{e_{1}, e_{2}\} = xy$ -plane in \mathbb{R}^{3}
Span { e_{3} }
Span { e_{3} }
Span { e_{1}, e_{2} }
Span { e_{1}, e_{2} }

Definition

For a nonempty set $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ of vectors in \mathcal{R}^n , we define the span of S to be the set of all linear combinations of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ in \mathcal{R}^n . This set is denoted by Span S or Span $\{u_1, u_2, ..., u_k\}$.

 $\text{Span } S = \{c_1u_1 + c_2u_2 + \cdots + c_ku_k : c_1, c_2, \cdots, c_k \in \mathcal{R}\}$

Properties

- 1. Span *{*0*}* = *{*0*}*
- 2. Span $\{u\}$ = the set of all multiples of **u**.
- 3. If *S* contains a nonzero vector, then Span *S* has infinitely many vectors.

Note that Span *S* can also be expressed as

$$
\text{Span } \mathcal{S} = \left\{ A\mathbf{v} : \mathbf{v} \in \mathcal{R}^k \right\}
$$

where $A = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_k]$ is an $n \times k$ matrix.

Example: Let
$$
S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 8 \\ -1 \\ 5 \end{bmatrix} \right\}, \mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 5 \\ -1 \end{bmatrix}
$$
, and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix}$.

(1) Is $\mathbf{v} \in \text{Span } S$? (2) Is $\mathbf{w} \in \text{Span } S$?

$$
A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 8 \\ 1 & -2 & -1 \\ 1 & 1 & 5 \end{bmatrix}
$$

Does $A\mathbf{x} = \mathbf{v}$ has a solution? Is the system of linear equations $A\mathbf{x} = \mathbf{v}$ consistent? Is the solution set of $A\mathbf{x} = \mathbf{v}$ non-empty?

The reduced row echelon form of $\begin{bmatrix} A & v \end{bmatrix}$ is

$$
\begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

The reduced row echelon form of $\begin{bmatrix} A & \mathbf{w} \end{bmatrix}$ is \Rightarrow **v** \in Span S \Rightarrow **w** \notin Span S $\sqrt{2}$ $\overline{1}$ $\left| \right|$ $\left| \right|$ $\left| \right|$ $\overline{1}$

Definitions
\nIf
$$
S, V \subset \mathbb{R}^n
$$
 and $S = V$, then we say
\n"S is a **generating set** for V ,"
\nor "S **generates** V ."

Question

- In general, on which conditions can a finite subset of \mathcal{R}^m , $\mathcal{S} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n} \subset \mathcal{R}^m$, generate \mathcal{R}^m ?
- Let us define $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$.
- What is the span of columns of *A*?
- When is A **x** = **v** consistent for some $\mathbf{v} \in \mathbb{R}^m$?
- When is $A\mathbf{x} = \mathbf{v}$ consistent for any $\mathbf{v} \in \mathbb{R}^m$?
- What is the rank of *A*?
- What property should the reduced row echelon form of *A* possess?

The following statements about an $m \times n$ matrix *A* are equivalent.

(a) The span of the columns of *A* is \mathcal{R}^m .

(b) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution (that is, $A\mathbf{x} = \mathbf{b}$ is consistent) for each $\mathbf{b} \in \mathcal{R}^m$.

(c) The rank of *A* is *m*, the number of rows of *A*.

(d) The reduced row echelon form of *A* has no zero rows.

(e) There is a pivot position in each row of *A*.

The following statements about an $m \times n$ matrix *A* are equivalent.

(a) The span of the columns of A is \mathcal{R}^m .

(b) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution (that is, $A\mathbf{x} = \mathbf{b}$ is consistent) for each $\mathbf{b} \in \mathcal{R}^m$.

(c) The rank of *A* is *m*, the number of rows of *A*.

(d) The reduced row echelon form of *A* has no zero rows.

(e) There is a pivot position in each row of *A*.

Proof (a) \Leftrightarrow (b): for any **b** in \mathbb{R}^m , **b** = *A***x** for some **x**. $(c) \Leftrightarrow (d)$: by the definition of rank. (b) \Rightarrow (c): otherwise, the reduced row echelon form *R* of *A* has a zero bottom row, and $R**x** = **e**_m$ is inconsistent ⇒ with the inverse of the sequence of elementary oper`ations that transforms *A* to *R*, $\lceil R \mathbf{e}_m \rceil$ may be transformed back to $\begin{bmatrix} A & \mathbf{d} \end{bmatrix}$ with some **d** in \mathbb{R}^m , and A **x** = **d** is inconsistent $\Rightarrow \mathbb{Z}$ (contradiction) $(c) \Rightarrow (b)$: the reduced row echelon form *R* of *A* has no zero rows \Rightarrow rank $A = \text{rank } [A \mathbf{b}]$ for all \mathbf{b} in $\mathbb{R}^m \Rightarrow$ (b). $(d) \Leftrightarrow (e)$: by the definition of pivot position.

11

Question

- On which conditions does a finite subset of \mathcal{R}^m , \mathcal{S} , be the **smallest** set that generates *^R^m*?
- Let us define $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$.

- \bullet On which conditions does a finite subset of \mathcal{R}^m , \mathcal{S} , be the **smallest** set that generates Span *S*?
- What is the feature of a "redundant" vector \bf{v} in \cal{S} when it comes to generating Span *S*?
- That is, what kind of $\mathbf{v} \in \mathcal{S}$ will make Span $\mathcal{S} =$ Span $(\mathcal{S} \setminus {\{\mathbf{v}\}})$?

Let $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ be a set of vectors from \mathcal{R}^n and let v be a vector in \mathcal{R}^n . Then Span $\{u_1, u_2, \ldots, u_k, v\} =$ Span $\{u_1, u_2, \ldots, u_k\}$ if and only if v belongs to the span of *S*.

Proof

Let $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ be a set of vectors from \mathcal{R}^n and let v be a vector in \mathcal{R}^n . Then Span $\{u_1, u_2, \ldots, u_k, v\} =$ Span $\{u_1, u_2, \ldots, u_k\}$ if and only if v belongs to the span of *S*.

Proof Since Span $S \subseteq \text{Span}(S \cup \{v\})$, only need to show Span(S ∪ $\{v\}$) ⊆ Span S \Leftrightarrow $v \in$ Span S . "**v** ∈ Span**S**":

"**v** ∉ Span**S**":

14

Let $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ be a set of vectors from \mathcal{R}^n and let v be a vector in \mathcal{R}^n . Then Span $\{u_1, u_2, \ldots, u_k, v\} =$ Span $\{u_1, u_2, \ldots, u_k\}$ if and only if v belongs to the span of *S*.

Proof Since Span $S \subseteq$ Span $(S \cup \{v\})$, we only need to show Span(**S** ∪ {**v}**) ⊆ Span **S** ⇔ **v** ∈ Span **S**. $\lq\lq\mathbf{v} \in \mathsf{Span}\mathcal{S}$ ": Then $\mathbf{v} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \cdots + a_k \mathbf{u}_k$ for some scalars a_1, a_2, \ldots, a_k . For all $\mathbf{w} \in \text{Span}(S \cup \{v\})$, $\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k + b\mathbf{v}$ for some **scalars** $c_1, c_2, ..., c_k$ and *b*. Then $\mathbf{w} = (c_1 + ba_1)\mathbf{u}_1 + (c_2 + ba_2)\mathbf{u}_2$ $+\cdots+(c_k+b a_k)\mathbf{u}_k \in \text{Span}\mathbf{S}$ " $\mathbf{v} \notin \text{Span}(\mathbf{S} \cup \{\mathbf{v}\}) \subset \text{Span}(\mathbf{S} \cup \{\mathbf{v}\})$

This also means by removing from a set some vectors which are linear combinations of other vectors, the span of the set is not changed.

Homework Set for 1.6

Section 1.6: Problems 1, 3, 9, 11, 17, 21, 25, 27, 31, 33, 35, 37, 39, 41, 45, 49, 53, 57, 61, 63, 69, 71