1.6 Span of a Set of Vectors

Definition

For a nonempty set $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ of vectors in \mathbb{R}^n , we define the **span** of S to be the set of all linear combinations of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ in \mathbb{R}^n . This set is denoted by Span S or Span ${\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$.

- Why did we (mathematicians) define the term "Span"?
 - When we want to say
 "v is a linear combination of u₁, u₂, and u₃," we can simply say

$$\mathbf{v} \in \text{Span} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$$

Span $\mathcal{S} = \{c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k : c_1, c_2, \dots, c_k \in \mathcal{R}\}$

Example:

$$S_{1} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, S_{2} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \right\}, \text{Span } S_{1} = \text{Span } S_{2}$$

$$S_{3} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}, S_{4} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\},$$

$$\Rightarrow \text{Span} S_{3} = \text{Span} S_{4} = \Re^{2}$$
nonparallel vectors

Example: Consider the standard vectors in \mathcal{R}^3 .

$$\mathbf{e}_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{e}_{2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{e}_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
Span { $\mathbf{e}_{1}, \mathbf{e}_{2}$ } = xy-plane in \mathcal{R}^{3}
Span { \mathbf{e}_{3} } = z-axis in \mathcal{R}^{3}
Span { \mathbf{e}_{3} } Span { $\mathbf{e}_{1}, \mathbf{e}_{2}$ }

Definition

For a nonempty set $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ of vectors in \mathbb{R}^n , we define the **span** of S to be the set of all linear combinations of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ in \mathbb{R}^n . This set is denoted by Span S or Span ${\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$.

Span $\mathcal{S} = \{c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k : c_1, c_2, \dots, c_k \in \mathcal{R}\}$

Properties

- 1. Span $\{0\} = \{0\}$
- 2. Span $\{\mathbf{u}\}$ = the set of all multiples of \mathbf{u} .
- 3. If \mathcal{S} contains a nonzero vector, then Span \mathcal{S} has infinitely many vectors.

Note that Span ${\mathcal S}$ can also be expressed as

Span
$$\mathcal{S} = \left\{ A\mathbf{v} : \mathbf{v} \in \mathcal{R}^k \right\}$$

where $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}$ is an $n \times k$ matrix.

Example: Let
$$S = \left\{ \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\8\\-1\\5 \end{bmatrix} \right\}, \mathbf{v} = \begin{bmatrix} 3\\0\\5\\-1 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} 2\\1\\3\\-1 \end{bmatrix}.$$

(1) Is $\mathbf{v} \in \text{Span } S$? (2) Is $\mathbf{w} \in \text{Span } S$?

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 8 \\ 1 & -2 & -1 \\ 1 & 1 & 5 \end{bmatrix}$$

Does $A\mathbf{x} = \mathbf{v}$ has a solution? Is the system of linear equations $A\mathbf{x} = \mathbf{v}$ consistent? Is the solution set of $A\mathbf{x} = \mathbf{v}$ non-empty?

The reduced row echelon form of $\begin{bmatrix} A & v \end{bmatrix}$ is

$$\begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\Rightarrow \mathbf{v} \in \text{Span } S$$

The reduced row echelon form of $\begin{bmatrix} A & \mathbf{w} \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\Rightarrow \mathbf{w} \notin \text{Span } S$

7

Definitions
If
$$S, V \subset \mathbb{R}^n$$
 and Span $S = V$, then we say
"S is a generating set for V ,"
or "S generates V ."
Example: Does $S = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\}$ generate \mathbb{R}^3 ?
Let $A = \begin{bmatrix} 1 & 1 & 1 & 1\\0 & 1 & 1 & -2\\0 & 0 & 1 & 1 \end{bmatrix}$.
For any \mathbf{v} in \mathbb{R}^3 , let $\begin{bmatrix} R \ \mathbf{c} \end{bmatrix}$ be the reduced row echelon form of
 $\begin{bmatrix} A \ \mathbf{v} \end{bmatrix}$, then
 $R = \begin{bmatrix} 1 & 0 & 0 & 3\\0 & 1 & 0 & -3\\0 & 0 & 1 & 1 \end{bmatrix}$: rank = 3
 $\Rightarrow \begin{bmatrix} R \ \mathbf{c} \end{bmatrix}$ has no nonzero rows with only entries from \mathbf{c}
 \Rightarrow for any \mathbf{v} in \mathbb{R}^3 , $\mathbf{v} = A\mathbf{x}$ for some \mathbf{x} , thus Span $S = \mathbb{R}^3$.

• Question

- In general, on which conditions can a finite subset of \mathcal{R}^m , $\mathcal{S} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n} \subset \mathcal{R}^m$, generate \mathcal{R}^m ?
- Let us define $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$.
- What is the span of columns of *A*?
- When is $A\mathbf{x} = \mathbf{v}$ consistent for some $\mathbf{v} \in \mathcal{R}^m$?
- When is $A\mathbf{x} = \mathbf{v}$ consistent for any $\mathbf{v} \in \mathbf{R}^m$?
- What is the rank of *A*?
- What property should the reduced row echelon form of *A* possess?

The following statements about an $m \times n$ matrix A are equivalent.

(a) The **span** of the columns of A is \mathcal{R}^m .

(b) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution (that is, $A\mathbf{x} = \mathbf{b}$ is consistent) for each $\mathbf{b} \in \mathcal{R}^m$.

(c) The **rank** of A is m, the number of rows of A.

(d) The **reduced row echelon form** of A has no zero rows.

(e) There is a **pivot position** in each row of A.

The following statements about an $m \times n$ matrix A are equivalent.

(a) The **span** of the columns of A is \mathcal{R}^m .

(b) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution (that is, $A\mathbf{x} = \mathbf{b}$ is consistent) for each $\mathbf{b} \in \mathcal{R}^m$.

(c) The **rank** of A is m, the number of rows of A.

(d) The **reduced row echelon form** of A has no zero rows.

(e) There is a **pivot position** in each row of A.

Proof (a) \Leftrightarrow (b): for any **b** in \mathcal{R}^m , **b** = A**x** for some **x**. (c) \Leftrightarrow (d): by the definition of rank. (b) \Rightarrow (c): otherwise, the reduced row echelon form R of A has a zero bottom row, and $R\mathbf{x} = \mathbf{e}_m$ is inconsistent \Rightarrow with the inverse of the sequence of elementary oper`ations that transforms A to R, $[R e_m]$ may be transformed back to [A d] with some d in \mathcal{R}^m , and $A\mathbf{x} = \mathbf{d}$ is inconsistent $\Rightarrow \mathbf{X}$ (contradiction) (c) \Rightarrow (b): the reduced row echelon form *R* of *A* has no zero rows \Rightarrow rank A = rank $[A \ \mathbf{b}]$ for all \mathbf{b} in $\mathcal{R}^m \Rightarrow (\mathbf{b})$. 11 (d) \Leftrightarrow (e): by the definition of pivot position.

• Question

- On which conditions does a finite subset of \mathcal{R}^m , \mathcal{S} , be the **smallest** set that generates \mathcal{R}^m ?
- Let us define $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$.

- On which conditions does a finite subset of \mathcal{R}^m , \mathcal{S} , be the **smallest** set that generates Span \mathcal{S} ?
- What is the feature of a "redundant" vector **v** in S when it comes to generating Span S?
- That is, what kind of $\mathbf{v} \in \mathcal{S}$ will make Span $\mathcal{S} = \text{Span } (\mathcal{S} \setminus \{\mathbf{v}\})$?

Let $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ be a set of vectors from \mathcal{R}^n and let \mathbf{v} be a vector in \mathcal{R}^n . Then Span ${\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{v}} = \text{Span } {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ if and only if \mathbf{v} belongs to the span of S.

Proof

Let $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ be a set of vectors from \mathbb{R}^n and let \mathbf{v} be a vector in \mathbb{R}^n . Then Span ${\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{v}} = \text{Span } {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ if and only if \mathbf{v} belongs to the span of S.

Proof Since Span *S* ⊆ Span(*S* ∪ {v}), only need to show Span(*S* ∪ {v}) ⊆ Span *S* ⇔ v ∈ Span *S*. "v ∈ Span*S*":

"v∉ Span*S*":

Let $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ be a set of vectors from \mathbb{R}^n and let \mathbf{v} be a vector in \mathbb{R}^n . Then Span ${\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{v}} = \text{Span } {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ if and only if \mathbf{v} belongs to the span of S.

Proof Since SpanS ⊆ Span(S ∪ {v}), we only need to show Span(S ∪ {v}) ⊆ Span S ⇔ v ∈ Span S. "v ∈ SpanS": Then v = a_1 u₁+ a_2 u₂+...+ a_k u_k for some scalars $a_1, a_2, ..., a_k$. For all w ∈ Span(S ∪ {v}), w = c_1 u₁+ c_2 u₂+...+ c_k u_k +bv for some scalars $c_1, c_2, ..., c_k$ and b. Then w = (c_1+ba_1) u₁+ (c_2+ba_2) u₂ +...+ (c_k+ba_k) u_k ∈ SpanS "v ∉ SpanS": Span(S ∪ {v})) ⊄ SpanS since v ∈ Span(S ∪ {v})

This also means by removing from a set some vectors which are linear combinations of other vectors, the span of the set is not changed.

Homework Set for 1.6

Section 1.6: Problems 1, 3, 9, 11, 17, 21, 25, 27, 31, 33, 35, 37, 39, 41, 45, 49, 53, 57, 61, 63, 69, 71