Exercises for Unit 4

1. Let (Ω, Σ, μ) be a measure space, it is called a complete measure space if every μ-null set is in Σ. Define

$$
\bar{\Sigma}=\{A \subset \Omega: \text { there are sets } B \text { and } C \text { in } \Sigma \text { such that } C \subset A \subset B \text { and } \mu(B \backslash C)=0\} ;
$$

and for $A \in \bar{\Sigma}$ let $\bar{\mu}(A)=\mu(B)=\mu(C)$ where B, C in Σ are as in the definition of $\bar{\Sigma}$. Clearly $\bar{\mu}$ is well-defined on $\bar{\Sigma}$ and is an extension of μ to $\bar{\Sigma}$.
(i) Show that $\bar{\Sigma}$ is a σ-algebra on Ω and $\bar{\mu}$ is σ-additive on $\bar{\Sigma}((\Omega, \bar{\Sigma}, \bar{\mu})$ is called the completion of $(\Omega, \Sigma, \mu))$.
(ii) Show that (Ω, Σ, μ) is complete if and only if

$$
(\Omega, \Sigma, \mu)=(\Omega, \bar{\Sigma}, \bar{\mu})
$$

and that $(\Omega, \bar{\Sigma}, \bar{\mu})$ is the smallest complete measure space containing (Ω, Σ, μ) in the sense that if $(\Omega, \hat{\Sigma}, \hat{\mu})$ is a complete measure space with $\Sigma \subset \hat{\Sigma}$ and $\left.\hat{\mu}\right|_{\Sigma}=\mu$, then $\bar{\Sigma} \subset \hat{\Sigma}$ and $\bar{\mu}(A)=\hat{\mu}(A)$ for $A \in \bar{\Sigma}$.
2. Show that for k, l in $\mathbb{N},\left(\mathbb{R}^{k+l}, \mathscr{L}^{k+l}, \lambda^{k+l}\right)$ is the completion of $\left(\mathbb{R}^{k} \times \mathbb{R}^{l}, \mathscr{L}^{k} \otimes \mathscr{L}^{l}, \lambda^{k} \times \lambda^{l}\right)$.
3. Suppose that $\left.\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ are σ-finite complete measure spaces and let μ be the measure constructed from $\mu_{1} \times \mu_{2}$ on $\Sigma_{1} \otimes \Sigma_{2}$ by Method I. Show that $\left(\Omega_{1} \times \Omega_{1}, \Sigma^{\mu}, \mu\right)$ is the completion of $\left(\Omega_{1} \times \Omega_{2}, \Sigma_{1} \otimes \Sigma_{2}, \mu_{1} \times \mu_{2}\right)$.
4. Let (Ω, Σ, μ) be a σ-finite measure space and f a nonnegative Σ-measurable function on Ω. Put $G_{f}=\{(w, y) \in \Omega \times[0, \infty): 0<y<f(w)\}$. Show that $G_{f} \in \Sigma \otimes \mathscr{B}$ and $\mu \times \lambda\left(G_{f}\right)=\int_{\Omega} f d \mu$.
5. Show that $\int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-j x} \sin x\right) d x=\sum_{j=1}^{\infty} \int_{0}^{\infty} e^{-j x} \sin x d x$ and use this fact to show that $\int_{0}^{\infty} \frac{\sin x}{e^{x}-1} d x=$ $\sum_{j} \frac{1}{1+j^{2}}$.
6. Show that $\int_{0}^{\infty}\left(\frac{\tan ^{-1} t}{t}\right)^{2} d t=\pi \ln 2$ by integrating the triple integral

$$
\int_{0}^{1}\left(\int_{0}^{1}\left(\int_{0}^{\infty} \frac{1}{1+x^{2} t^{2}} \frac{1}{1+y^{2} t^{2}} d t\right) d x\right) d y
$$

