Exercises for Unit 3

- 1. Let μ be additive on an algebra \mathcal{A} on Ω .
 - (a) Show that μ is σ -additive if and only if μ is continuous from below on \mathcal{A} .
 - (b) Show that if μ is σ -additive on \mathcal{A} , then for any seq $\{A_n\} \subset \mathcal{A}$ with $\bigcup_n A_n \in \mathcal{A}$ we have $\mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$ (sub σ -additivity).
- 2. Let μ be a σ -additivity set function on an algebra \mathcal{A} on Ω with $\mu(\Omega) < \infty$. Suppose that μ_1 and μ_2 are measures on a σ -algebra $\Sigma \supset \mathcal{A}$ such that $\mu_1(A) = \mu_2(A) = \mu(A)$ for all $A \in \mathcal{A}$. Show that $\mu_1 = \mu_2$ on $\sigma(\mathcal{A})$. (Hint: Show that $\{B \in \Sigma : \mu_1(B) = \mu_2(B)\}$ is a λ -system on Ω)
- 3. Let (Ω, Σ, μ) be a measure space, and suppose that f and g are measurable functions with $f \leq g$.
 - (a) If $\int_{\Omega} g^+ d\mu < \infty$, show that $\int_{\Omega} f d\mu$ exists and $\int_{\Omega} f d\mu \leq \int_{\Omega} g d\mu$.
 - (b) Suppose that both $\int_{\Omega} f d\mu$ and $\int_{\Omega} g d\mu$ exist. Show that $\int_{\Omega} f d\mu \leq \int_{\Omega} f d\mu$
- 4. Let f be a measurable function on (Ω, Σ, μ) . Show that $\int_{\Omega} f d\mu$ exists if and only if $f = f_1 f_2$ for some nonnegative measurable functions f_1 and f_2 such that $\int_{\Omega} f_1 d\mu \int_{\Omega} f_2 d\mu$ is meaningful. (Hint: for f_1 and f_2 as above, observe that $f^+ \leq f_1$ and $f^- \leq f_2$).
- 5. If f and g are measurable functions on (Ω, Σ, μ) such that $\int_{\Omega} f d\mu$, $\int_{\Omega} g d\mu$, and $\int_{\Omega} f d\mu + \int_{\Omega} g d\mu$ are meaningful, show that f + g is defined a.e. and

$$\int_{\Omega} (f+g)d\mu = \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$$

- 6. Let f be a measurable function on (Ω, Σ, μ) .
 - (a) If $f \ge 0$ a.e., then show that $\int_{\Omega} f d\mu = 0$ if and only if f = 0 a.e.
 - (b) If $A \in \Sigma$, define $\int_A f d\mu = \int_\Omega f I_A d\mu$ if $\int_\Omega f I_A d\mu$ exits. Show that f = 0 a.e. if and only if $\int_A f d\mu = 0$ for all $A \in \Sigma$.
- 7. Suppose that f and g are defined a.e. on (Ω, Σ, μ) and are measurable. Show that if f + g is defined a.e. then f + g is measurable.
- 8. Show that if $\{f_n\}$ is a seq. of measurable functions which is bounded from below by an integrable function a.e. and is nondecreasing a.e., then $\int_{\Omega} \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu$. (Hint: Show first that f_n^- is integrable and hence $\int_{\Omega} f_n d\mu$ is defined for each n.)
- 9. Let (Ω, Σ, μ) be a measure space, and let $\{A_k\}_{k=1}^{\infty} \subset \Sigma$.

(a) Show that if f is integrable, then

$$\int_{\limsup_{k \to \infty} A_k} f d\mu = \lim_{k \to \infty} \int_{\bigcup_{j=k}^{\infty} A_j} f d\mu$$

- (b) Let f be integrable and $\epsilon > 0$. Show that there is $\delta > 0$ such that if $A \in \Sigma$ and $\mu(A) < \delta$, then $\int_A |f| d\mu < \epsilon$. (Hint: suppose the contrary. Then for each $k \in \mathbb{N}$, there is $A_k \in \Sigma$ such that $\mu(A_k) < \frac{1}{k^2}$ and $\int_A |f| d\mu \ge \epsilon$, then observe that $\mu(\limsup_{k \to \infty} A_k) = 0$ and conclude a contradiction.)
- 10. (a) Show that for $1 \le p < \infty$, $|a_1 + \dots + a_n|^p \le n^{p-1} \sum_{j=1}^n |a_j|^p$ for real numbers a_1, \dots, a_n . (b) Show that if $f, g \in L^p(\Omega, \Sigma, \mu), 1 \le p < \infty$, with $||f||_p + ||g||_p < \infty$, then $||f + g||_p < \infty$.
- 11. Let (Ω, Σ, μ) be a measure space with $\mu(\Omega) < \infty$ and suppose that $\{f_n\}$ is a seq. of measurable functions each of which takes finite value a.e. and that $f_n \to f$ a.e. with finite limit. Show that there are Z, A_1, A_2, \cdots in Σ such that $\Omega = Z \bigcup \bigcup_n A_n, \mu(Z) = 0$, and $f_n \to f$ uniformly on each A_k .
- 12. Suppose that $\{f_n\}$ is a seq. of measurable functions on (Ω, Σ, μ) . Show that if $\int_{\Omega} \sum_{n=1}^{\infty} |f_n| d\mu < \infty$, then $\sum_{n=1}^{\infty} f_n$ converges a.e., the function $\sum_{n=1}^{\infty} f_n$ is integrable, and

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_{\Omega} f_n d\mu$$

- 13. Suppose that $\{f_k\}$ is a seq. in $L^p(\Omega, \Sigma, \mu)$, $1 \le p < \infty$, such that $f_k \to f$ a.e. with $f \in L^p(\Omega, \Sigma, \mu)$ and $||f||_p = \lim_{k \to \infty} ||f_k||_p$. Show that $f_k \to f$ in $L^p(\Omega, \Sigma, \mu)$.
- 14. Suppose that the measure space (Ω, Σ, μ) is finite, i.e. $\mu(\Omega) < \infty$, and $f \in L^{\infty}(\Omega, \Sigma, \mu)$.
 - (a) Show that $\left(\frac{1}{\mu(\Omega)}\int_{\Omega}|f|^{p}d\mu\right)^{\frac{1}{p}} \leq \left(\frac{1}{\mu(\Omega)}\int_{\Omega}|f|^{p'}d\mu\right)^{\frac{1}{p'}}$ if $1 \leq p \leq p' < \infty$.
 - (b) Show that $\lim_{p\to\infty}(\frac{1}{\mu(\Omega)}\int_\Omega |f|^pd\mu)=\|f\|_\infty$
- 15. Suppose that $1 \le p < r$. Show that for any q strictly between p and r we have

$$L^{q}(\Omega, \Sigma, \mu) \subset L^{p}(\Omega, \Sigma, \mu) + L^{r}(\Omega, \Sigma, \mu).$$