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Language Modeling: providing linguistic constraints to help the

selection of correct words
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Prob [the computer is listening] > Prob [they come tutor is list sunny]
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From Fundamentals of Information Theory & cc.-c..cc

* Examples for Languages
O0<H(S) < logM
—Source of English text generation

S [——this courseis about speech.....

« the random variable is the character = 26*2+.....<64=26¢
H (S) < 6 bits (of information) per character

 the random variable is the word = assume total number of words=30,000<21>
H (S) < 15 bits (of information) per word

—Source of speech for Mandarin Chinese
E—FIRBRET ...
 thera

andom variable is the syllable (including the tone) = 1300 < 21
H3S) <11 bits (of information) per syllable (including the tone)
- therandom variable is the syllable (ignoring the tone) = 400 < 2°

H (S) <9 bits (of information) per syllable (ignoring the tone)
- the random variable is the character = 8,000 < 213

H (S) < 13 bits (of information) per character

—Comparison: speech— #:8B& , girl— %%, computer— st &1
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Perplexity T miAme

* Perplexity of A Language Source S

H(S) =- 3 p(x ) logp(x,)| (perplexity: JEEE )
PP(S) =2
—size of a “virtual vocabulary” in which all words (or units) are
equally probable

. e.g. 1024 words each with probability , =10 bits (of information)
H(S)= 10 bits (of information), PP(S)=1024

—branching factor estimate for the language
*A Language Model
—assigning a probability P(w.|c,) for the next possible word w,
given a condition ¢,

e.g. P(W=w_,w,,w,,w,...w, )=P(w,)P(w,|w,) NP(w,|w, ,,w. )

L T i=3

C,= C

* A Test Corpus D of N sentences, with the i-th sentence W.
has n. words and total words N,
D= [wl,vaz,....,wN], W, = w,,W,,Ws,....W,,
N, :Zl' n.

n



Perplexity T miAme

* Perplexity of A Language Model P(w;|c.) with respect to a
Test Corpus D

1 NN
~H(P:D)= - N—Dg[%logP(wj\C;)}average of all log P(w;|c;) over the
. whole corpus D
= 2210% P('/'é'\cf) "1, logarithm of geometric mean of P(w|

/=l j=1

C)
—-pp (P ; D) =21
average branching factor (in the sense of geometrical mean of

reciprocals) !
e.g. P(W=w,w,...w.)=P(w,) P(w,|w,) PLW3|W1,W2)L(W4|W2,W3) L(W5|W3,W4) ..... T
11 1 1 1
1024 512 256 128 256

S|

— “ 10124][ 512]{ 226]{ 1;8][ 2é6] } =312

—the capabilities of the language model in predicting the next
word given the linguistic constraints extracted from the training
COrpus

—the smaller the better, performance measure for a language
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An Perplexity Analysis Example with Respect&
Different Subject Domains Tu

*Domain-specific Language
Models Trained with Domain
Specific Corpus of Much -
Smaller Size very often
Perform Better than a General
Domain Model

-

00

600

550

—Training corpus: Internet news ma -
l"\thCQ I‘)I"\ _
1 pOlItICS \,lllllcorg. Llage ;450 W B
2 congress 2.1 M 100 W
3 bulsmess 8.9 M W
4 culture 4.3 M m
5 sports 2.1 M I
6 transportation 1.6M
7 foa?ty 10.8 M 30 |
8 loca 8.1M T
9 general(average) %0 1 2 3 4 S5 6 8
58.1M aanaral Adnmin Anmin cnarifi r F|g 5

OO
—Sports section gives the lowest @:JEIMJ

perplexity even with very small
training corpus
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* KL Divergence or Cross-Entropy

p[p(x)]a(x)] =3 pix,) log{ x| g
—Jensen’s Inequality !

- X plx ) logp(x, J<-Zp IOQq )]

Someone call thi s cross-entro | q
—entropy when p(x) is mcorrectfy estimated aspe]/( ) (le ( ) S t(o)]some

entropy increase)

*The True Probabilities P(w.|c.) incorrectly estlmafed as
P(w.|c;) by the langu de

l.mﬁz logq(x,)] Zp(xmoi_l

N— o

(averaglng by all ﬁ(averagmg if p(x) is

|
*The Psea?BIGeSX|ty isa i?{@ﬂp@ F0Ss- -Entropy” when the true

statistical characteristics of the test corpus D is
incorrectly estimated as p(w;|c;) by the language model
—~H(P;D)=X(D | P)
—the larger the worse

10
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Smoothing of Language Models

*Data Sparseness
—many events never occur in the training data

e.g. Prob [Jason immediately stands up]=0 because Prob [immediately| Jason]=0

—smoothing: trying to assign some non-zero probabilities to all

events even if they never occur in the training data
*Add-one Smoothing

—assuming all events occur once more than it actually does
e.g. bigram

Aw|w)

N<w,w>) _ NM<wh,w >) N< W, w >) +1
N( W N NM< W, W) ZN<M/M/>)+I/
-

V: total number of distinct words in the
vocabulary
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Smoothing : Unseen Events -

||II|I 1|| l! 11], R | T I.h...ﬂ"h.,”lh_.___.g_l_;_u_ et
. : : @@@

P(w;) P(w;|w;,) P(Wilwi-z, w;,)

unigram bi-gram trigram
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Smoothing of Language Models

* Back-off Smoothing
(Wi W1 Wigags- - Wi p)= {/iwilwin+1’ Winigse - Wig), IEN(SW, o, Wi, Wi>)>0
AW, op5e. W) (Wilw, oo W), iFN(<W .. W, W>)=0

.

Eg:< Zg , if ZZ>O

= : N-gram
N, s if =0

smoothed n-gram

—back-off to lower-order if the count is zero, prob (you| see)>prob (thoul|
see)

* Interpolation Smoothing

(Wi Wiy Wipagse o Wi )ZO(Wi e W ) POWH W W ) (L-D(W e W) (WH Wy W)

—interpolated with lower-order model even for events with non-zero
counts

- also useful for smootlfipgAgpecial-damein language model with a
background model, or adapting a general domain language model to a

special domain

14



Smoothingof Language Models & simusan

* Good-Turing Smoothing

—Good-Turning Estimates: properly decreasing relative frequencies
for observed events and allocate some frequencies to unseen
events

—Assuming a total of K events {1,2,3...,k,.....K}

number of observed occu rmem:gs If]c(m)event k: n(k),

N: total number of observations,
n.: number of distinct events that occur r times (number of different events k such that n(k) =r)

: : N=Xrn
—Good-Turing Estimates: Zr r
« total counts assigned to unseen events=n,
o total occurrences for events having occurred r times: rn. —

(r l) r+1
e an eventoccurring rtlmes |s assumed to have occurred r* times,
r =(r+1) Neas
o ™ for n,

¢ Xin=X(r+) 0 = (r+ ) n, =N
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N & N £ seen
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- —
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: " 3/18
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— An analogy: during fishing, getting each kind of fish is an event
16 an example: n(1)=10, n(2)=3, n(3)=2, n(4)=n(5)=n(6)=1, N=18

prob (next fish got is of a new kind) = prob (those occurring only ﬁce)

C r+l
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* Katz Smoothing
—large counts are reliable, so unchanged

—small counts are discounted, with total reduced counts assighed
to unseen events, based on Good-Turing estimates

2 n(1-d)rsn d: discount ratio for events with r
r=1

L times
—distribution of counts among unseen events based on next-lower-

order model: back off
—an example for bigram:
"N(<w,_,w.>)/N(w) ,r>r,

E(Wi‘wi'l) < d * N(<w,_,w>)/Nw), r,=r>0

~a(w_,w)P(w) ,r=0

|
a (w,,,w.): such that the total counts equal to those assigned
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Katz Smoothing

Mational Taiwan University

OpenCourseware

iru 2R BHBURR R

REX A[E] event 2
0 o
1
)
3

@unchanged



Class-based Language Modeling F cocncoirciins

* Clustering Words with Similar Semantic/Grammatic Behavior
into Classes

_ ~ sa — dog Street
€.8. I\J/Igtr]rl}j fou\llqv cat —q on road
(- SHhee —drove \ ( car campus
L rode bus 4{ in
father
My sister park]
—-P(w|w,,, w,,) = P(w, c(w,,

c(w)): the classmcludmgw

—Smoothing effect: back-off to classes when too few cou nts, classes
complementing the lower order models
—parameter size reduced

* Limited Domain Applications: Rule-based Clustering by Human

Knowledge uﬁ.ted 1\ v ) (s angeles ~ sunday "
e.g. Tell me all flights of g2 " "From o . on :

—new items can be easily added without training data

19 * General Domain Apdallcatlons Data-driven Clustering (probably
aided by rule-based knowledge)



Class-based Language Modeling F cocncoirciins

* Data-driven Word Clustering Algorithm Examples

—Example 1:
« initially each word belongs to a different cluster

» in each iteration a pair of clusters was identified and merged into a
cluster which minimizes the overall perplexity

» stops when no further (significant) reduction in perplexity can be
achieved

Reference: “Cluster-based N-gram Models of Natural Language”,
Computational Linguistics, 1992 (4), pp. 467-47

—Example 2:

Prob [W=w,w,w;...w, =T Prob(w,|w,,w,...w, ;)= [ Prob(wh)
h:w,,w,,..w. ,, history of w =

« clustering the histories into classes by decision trees (CART)
 developing a question set, entropy as a criterion

« may include both grammatic and statistical knowledge, both local
and long-distance relationship

Reference: “A Tree-based Statistical Language Model for Natural
” Language Speech Recognition”, IEEE Trans. Acoustics,
Speech and Signal Processing, 1989, 37 (7), pp. 1001-1008
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AN Example Class-paseda Chinese Languag% w

*A Three-stage Hierarchical Word Classification
Algorithm

— stage 1: classification by 198

POS features (syntactic & semantic)
* each word belonging to one class only

* each class characterized by a set of POS'’s
— stage 2 : further classification with data-driven approaches
— stage 3: final merging with data-driven approaches

f /élé (take) - ‘,55’—=LE§ (car) )
x (ride) ~ \~ 2+ (bus) POS featurei POS feature j
B (ride) LT kER (train)
. J | -FRi%  (airplane) A L
/%%E (drive) gl /\ )

M (steer) ~

N\ 7/

— rarely used words classified by human knowledge
- both data-driven and human-knowledge-driven

21



Mational Taiwan University

U[C]EHCOUF‘SE'NEH"E

POS features . 7o ZER B A R

W, w:. 3 wh"
i
Wy |, . &8 . - . lba - - -
s
: 7‘? . 25 Fig. 8
| ©0io)
Ny ’


https://creativecommons.org/licenses/by-nc-sa/3.0/tw/deed.zh_TW

Structural Features of Chinese Languageg& 5o -

*Almost Each Character with Its Own Meaning, thus Playing
Some Linguistic Role Independently

*No Natural Word Boundaries in a Chinese Sentence
BRI S B T NENAEEN TES R

— word segmentation not unique
— words not well defined

— commonly accepted lexicon not existing

*Open ( Essentially Unlimited ) Vocabulary with Flexible

Wording Structure
- new words easily created everyday & (electricity)+ & (brain)— &ER& (computer)
- long word arbitrarily abbreviated =& KZ (Taiwan University) > EX
- name/title E¥ERT4a4% (former President T.H. Lee) — ZFRI4E4E
)IfE

- unlimited number of compound words & (high)+ ZR (speed) + 2% (highway)— &%
N (freeway)

*Difficult for Word-based Approaches Popularly Used in
Alphabetic Languages

- serious out-of-vocabulary(OQV) problem

23
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Word-based and Character-based Chinese

.‘
‘rL - .| <-\n ‘.-I: 5. o-Hn.-

— words are the primary buﬂdlng blocks of sentences

— more information may be added

— lexicon plays the key role

— flexible wording structure makes it difficult to have a good enough
lexicon

— accurate word segmentation needed for training corpus

— serious “out-of -vocabulary(OOV)” problem in many cases

— all characters included as “ mono-character words”

Mational Taiwan University
* OpenCourselWare

Tu 52K BH B AR e

* Character-based Language Modeling

— avoiding the difficult problem of flexible wording structure and
undefined word boundaries

— relatively weak without word-level information

— higher order N-gram needed for good performance, which is
relatively difficult to realize

* Integration of Class-based/Word-based/Character-based

Models

— word-based models are more precise for frequently used words
— back-off to class-based models for events with inadequate counts
— each single word is a class if frequent enough



25

Segment Pattern Lexicon for Chinese - An Examgfopeﬂcomwape

* Segment Patterns Replacing the Words in the Lexicon

— segments of a few characters often appear together: one or a
few words

— regardless of the flexible wording structure

— automatically extracted from the training corpus (or network
information) statistically

— including all important patterns by minimizing the perplexity
* Advantages
— bypassing the problem that the word is not well-defined

— new words or special phrases can be automatically included
as long as they appear frequently in the corpus (or network
information)

— can construct multiple lexicons for different task domains as
long as the corpora are given(or available via the network)



Example Segment Patterns Extracted from p oo e v
Network News Outside of A Standard Lexicon ™ &XmiA®#

* Patterns with 2 Characters
- —E> MR > BE > EM > B > B’ 581E
Rk B Bl B R B|EBJA
* Patterns with 3 Characters
- SHEY) > R FER > HER > TEE
KRR AIRE » BIEZ » FHR > BRIKR » FEH
* Patterns with 4 Characters
- A2 XHEWKR > EIREE > 2RIEE > BEEE /]
BEETEET » ISR 0 1T T B > E{FEEE 0 IR RERR




word/segment Pattern segmentation

Samples Tu 52K BH B AR e

*With Extracted Segment
Pattern

e TR Bk B HZE K
1@ ANER
B 24 BRAE WIS

%En'l' /\5/_-_ ?Elﬂ?
BN Bif FE
ALK 3R RRE

&5 BIIELE

WNB AT A = iBEm
RBE LT

A58k 55@37-

R FEH S LA 22
FE B ] KelK

25 HE 7%

i

Ak

'Wlth A Standard Lexicon
el 2= 21 BEAR B E
1% KEFK
é ZRKXE X B
%En-l_ /\ }_:_ TISEE
=R B B 2

A Ak X\ Rl FE BY {BL

onal Taiwan University
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it o E o 1ot
oIl 38 8 (3 Fﬁd
7 [ X

D @
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— CR
S+ I

‘Percentage of Patterns outside of the Standard Lexicon:

28%
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The computer is listening B P g
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= @@@@ 577 ERKBEERITIIESZER FM 20X - XEmFEHEIFE
meJ CC 28R - JEEm=EY - HRA A E 3.0 =& 58]

e

O8O F 1 SEAREEHTIZER T 2UR - MEmXAEIRE
meJ CC TERIER - FFEZEE - HREIA NS = 3.0 EE 5Fr]

ABC..... Z 1‘5%%% o

e ok

FEe A @O HI B EABERTIRZER L BT - AIFERIFEEIE
meJ CC TMHLIET - JFRZEN - BEARDE 3.0 =&, A

1575 o
- DO 3 SEABEL TIZEA ML 24T o AERIFHARIE
meJ CC TMULIET - JFRZEN - MEARDE 3.0 =) #a

| Cgereral domain jmins;ucifin 1_57 éi o
pf=E>3
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