

Digital Speech Processing 數位語音處理概論

第六講 Language Modelling

授課教師:國立臺灣大學 電機工程學系 李琳山 教授

【本著作除另有註明外,採取<u>創用</u><u>CC</u> 「姓名標示-非商業性-相同方式分享」台灣 3.0 版 授權釋出】

References: 1. 11.2.2, 11.3, 11.4 of Huang or

2. 6.1-6.8 of Becchetti, or

3. 4.1-4.5, 8.3 of Jelinek

Language Modeling: providing linguistic constraints to help the selection of correct words

Prob [the computer is listening] > Prob [they come tutor is list sunny]

Prob [電腦聽聲音] > Prob [店老天呻吟]

Fig. 1

From Fundamentals of Information Theo 文 OpenCourseWare 要大朋放式課程

Examples for Languages

 $0 \le H(S) \le \log M$

Source of English text generation

- S this course is about speech.....
- the random variable is the character ⇒ 26*2+....<64=2⁶ H (S) < 6 bits (of information) per character
- the random variable is the word ⇒ assume total number of words=30,000<2¹⁵ H (S) < 15 bits (of information) per word

Source of speech for Mandarin Chinese

這一門課有關語音

- the random variable is the syllable (including the tone) \Rightarrow 1300 < 211 HSS) < 11 bits (of information) per syllable (including the tone)
- the random variable is the syllable (ignoring the tone) ⇒ 400 < 2°
 H (S) < 9 bits (of information) per syllable (ignoring the tone)
- the random variable is the character \Rightarrow 8,000 < 2¹³ H (S) < 13 bits (of information) per character
- -Comparison: speech— 語音, girl— 女孩, computer— 計算機

Entropy and Perplexity

Entropy and Perplexity—

bigram

11..1111

M= 512

Perplexity

Perplexity of A Language Source S

$$H(S) = -\sum_{i} p(x_i) \log p(x_i)$$
 (perplexity: 混淆度)
$$PP(S) = 2^{H(S)}$$

- -size of a "virtual vocabulary" in which all words (or units) are equally probable
 - e.g. 1024 words each with probability ,=10 bits (of information)
 H(S)= 10 bits (of information), PP(S)=1024
- -branching factor estimate for the language
- A Language Model
 - -assigning a probability $P(w_i|c_i)$ for the next possible word w_i given a condition c_i

e.g.
$$P(W=w_1, w_2, w_3, w_4....w_n) = P(w_1)P(w_2|w_1) \Pi P(w_i|w_{i-2}, w_{i-1})$$

$$c_1 = c_2$$

$$c_2$$
i=3
$$c_i$$

• A Test Corpus D of N sentences, with the i-th sentence W_i has n_i words and total words N_D

D =
$$[W_1, W_2, ..., W_N]$$
, $W_i = w_1, w_2, w_3, ..., w_{n_i}$
 $N_D = \sum_{i=1}^{N} n_i$

Perplexity

Perplexity of A Language Model P(w_i|c_i) with respect to a

Test Corpus D

$$-H(P;D) = -\frac{1}{N_D} \sum_{i=1}^{N} \left[\sum_{j=1}^{n_i} \log_P(w_j|c_j) \right] \text{ average of all log P}(w_j|c_j) \text{ over the }$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{n_j} \log_P(w_j|c_j)^{\frac{1}{N_D}}, \text{ logarithm of geometric mean of P}(w_j|c_j)$$

$$-pp(P;D) = 2^{H(P;D)}$$

average branching factor (in the sense of geometrical mean of

reciprocals)
e.g.
$$P(W=w_1w_2...w_n)=P(w_1) P(w_2|w_1) P(w_3|w_1,w_2) P(w_4|w_2,w_3) P(w_5|w_3,w_4)$$

$$\frac{1}{1024} \frac{1}{512} \frac{1}{256} \frac{1}{128} \frac{1}{256} \cdots \int_{1}^{1} \frac{1}{n} \int_{1}^{1} \frac{1}{256} \left[\left(\frac{1}{1024} \right) \left(\frac{1}{128} \right) \left(\frac{1}{128} \right) \left(\frac{1}{128} \right) \cdots \right]^{\frac{1}{n}} \right]^{-1} = 312$$

- -the capabilities of the language model in predicting the next word given the linguistic constraints extracted from the training corpus
- -the smaller the better, performance measure for a language

An Perplexity Analysis Example with Respect to Bifferent Subject Domains

 Domain-specific Language **Models Trained with Domain Specific Corpus of Much Smaller Size very often** Perform Better than a General **Jomain Model**-Training corpus: Internet news in the second state of the second sta **Domain Model**

	China	ca lang
1	politics	19.6 M 8
1 2 3	congress business	2.7 M
	business	8.9 M
	culture	4.3 M
5	sports	2.1 M
6	transportation	1.6 M
	society	10.8 M
8	local	8.1 M
8 9	general(average) 3.1 M	
58	3.1 M	

Fig. 5

-Sports section gives the lowest perplexity even with very small training corpus

Perplexity

KL Divergence or Cross-Entropy

$$D[p(x)||q(x)] = \sum_{i} p(x_i) \log \left[\frac{p(x_i)}{q(x_i)} \right] \ge 0$$
- Jensen's Inequality

$$-\sum_{i} p(x_{i}) \log p(x_{i}) \le -\sum_{i} p(x_{i}) \log q(x_{i})$$

Someone call this "cross-entropy" = X[p(x) | q(x)] — entropy when p(x) is incorrectly estimated as q(x) (leads to some entropy increase)

• The True Probabilities P(w_i|c_i) incorrectly estimated as P(w_i|c_i) by the language model

$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} \log q(x_k) = \sum_{i} p(x_i) \log q(x_i)$$
(averaging by all (averaging if $p(x_i)$ is samples)

Law of Lark power bers

• The Perplexity is a kind "Cross-Entropy" when the true statistical characteristics of the test corpus D is incorrectly estimated as p(w_i|c_i) by the language model

$$-H(P;D) = X(D \parallel P)$$

– the larger the worse

Law of Large Numbers

值 次數
$$a_1 \quad n_1 \\ a_2 \quad n_2 \\ \vdots \quad \vdots \quad \vdots$$

$$+ a_k \quad n_k \quad N$$

$$A ve = \frac{1}{N} \left(\sum_{i} a_{i} n_{i} \right) = \sum_{i} a_{i} \left(\frac{n_{i}}{N} \right) \equiv \sum_{i} a_{i} p_{i}$$

Smoothing of Language Models

Data Sparseness

-many events never occur in the training data

e.g. Prob [Jason immediately stands up]=0 because Prob [immediately Jason]=0

-smoothing: trying to assign some non-zero probabilities to all events even if they never occur in the training data

Add-one Smoothing

–assuming all events occur once more than it actually does
e.g. bigram

$$p(w^{j}|w^{k}) = \frac{N(\langle w^{k}, w^{j} \rangle)}{N(w^{k})} = \frac{N(\langle w^{k}, w^{j} \rangle)}{\sum_{j} N(\langle w^{k}, w^{j} \rangle)} \Rightarrow \frac{N(\langle w^{k}, w^{j} \rangle) + 1}{\sum_{j} N(\langle w^{k}, w^{j} \rangle) + V}$$

V: total number of distinct words in the vocabulary

Smoothing: Unseen Events-

Smoothing of Language Models

Back-off Smoothing

back-off to lower-order if the count is zero, prob (you| see)>prob (thou| see)

Interpolation Smoothing

$$(w_i | w_{i-n+1}, w_{i-n+2}, \dots w_{i-1}) = b(w_{i-n+1}, \dots w_{i-1}) P(w_i | w_{i-n+1}, \dots w_{i-1}) + (1 - b(w_{i-n+1}, \dots w_{i-1}))(w_i | w_{i-n+2}, \dots w_{i-1})$$

interpolated with lower-order model even for events with non-zero counts

-also useful for smoothing a special domain language model with a background model, or adapting a general domain language model to a special domain

Smoothing of Language Models

Good-Turing Smoothing

- Good-Turning Estimates: properly decreasing relative frequencies for observed events and allocate some frequencies to unseen events
- -Assuming a total of K events {1,2,3...,k,.....K} number of observed occurrences for event k: n(k), N: total number of observations,

 n_r : number of distinct events that occur r times (number of different events k such that n(k) = r)

–Good-Turing Estimates:

$$N = \sum_{r} r n_{r}$$

- total counts assigned to unseen events=n₁
- total occurrences for events having occurred r times: $rn_r \rightarrow (r+1)n_{r+1}$
- an event occurring r times is assumed to have occurred r* times,
- r^* for $r^* = (r+1)\frac{n_{r+1}}{n_r}$

•
$$\sum_{r} r^* n_r = \sum_{r} (r+1) \frac{n_{r+1}}{n_r} n_r = \sum_{r} (r+1) n_{r+1} = N$$

Good-Turing

– An analogy: during fishing, getting each kind of fish is an event an example: n(1)=10, n(2)=3, n(3)=2, n(4)=n(5)=n(6)=1, N=18 prob (next fish got is of a new kind) = prob (those occurring only $\frac{2}{12}$ ce)

Smoothing of Language Models

Katz Smoothing

-large counts are reliable, so unchanged

a (w_{i-1},w_i): such that the total counts equal to those assigned

-small counts are discounted, with total reduced counts assigned to unseen events, based on Good-Turing estimates

$$\sum_{r=1}^{6} n_r (1 - d_r) r = n_1$$

$$\text{times}$$
d_r: discount ratio for events with r

- -distribution of counts among unseen events based on next-lowerorder model: back off
- -an example for bigram:

$$\overline{P}(w_i|w_{i-1}) = \begin{cases} N(\langle w_{i-1}, w_i \rangle) / N(w_i), r > r_0 \\ d_r \cdot N(\langle w_{i-1}, w_i \rangle) / N(w_i), r_0 \ge r > 0 \\ a(w_{i-1}, w_i) P(w_i), r = 0 \end{cases}$$

Katz Smoothing

次數 不同 event 數

0

$$M_{\text{M}} \propto \frac{M^*}{M}$$

Class-based Language Modeling

Clustering Words with Similar Semantic/Grammatic Behavior into Classes

c(w_j): the class including w_j

- Smoothing effect: back-off to classes when too few counts, classes complementing the lower order models
- parameter size reduced

 Limited Domain Applications: Rule-based Clustering by Human Knowledge

e.g. Tell me all flights of

- -new items can be easily added without training data
- General Domain Applications: Data-driven Clustering (probably aided by rule-based knowledge)

Class-based Language Modeling

Data-driven Word Clustering Algorithm Examples

- -Example 1:
 - initially each word belongs to a different cluster
 - in each iteration a pair of clusters was identified and merged into a cluster which minimizes the overall perplexity
 - stops when no further (significant) reduction in perplexity can be achieved

Reference: "Cluster-based N-gram Models of Natural Language", Computational Linguistics, 1992 (4), pp. 467-479

-Example 2:

Prob
$$[W = w_1 w_2 w_3 w_n]^n = \Pi \text{ Prob}(w_i | w_1, w_2, w_{i-1}^n) = \Pi \text{ Prob}(w_i | h_i)$$

 $h_i : w_1, w_2, w_{i-1}, \text{ history of } w_i$

- clustering the histories into classes by decision trees (CART)
- developing a question set, entropy as a criterion
- may include both grammatic and statistical knowledge, both local and long-distance relationship

Reference: "A Tree-based Statistical Language Model for Natural Language Speech Recognition", IEEE Trans. Acoustics, Speech and Signal Processing, 1989, 37 (7), pp. 1001-1008

An Example Class-based Chinese Language OpenCourseWare Model

A Three-stage Hierarchical Word Classification Algorithm

- stage 1 : classification by 198

POS features (syntactic & semantic)

- each word belonging to one class only
- each class characterized by a set of POS's
- stage 2 : further classification with data-driven approaches
- stage 3: final merging with data-driven approaches

- rarely used words classified by human knowledge
- both data-driven and human-knowledge-driven

POS features

組織 (_,_,_,_)

Data-driven Approach Example

- *Almost Each Character with Its Own Meaning, thus Playing Some Linguistic Role Independently
- No Natural Word Boundaries in a Chinese Sentence

電腦科技的進步改變了人類的生活和工作方式

- word segmentation not unique
- words not well defined
- commonly accepted lexicon not existing
- **Open (Essentially Unlimited) Vocabulary with Flexible Wording Structure**
 - new words easily created everyday 電 (electricity)+ 腦 (brain)→電腦 (computer)
 - long word arbitrarily abbreviated <u>臺灣大</u>學 (Taiwan University) → 臺大
 - name/title 李登輝前總統 (former President T.H. Lee) → 李前<u>總統</u>登 輝
 - unlimited number of compound words 高 (high) + 速 (speed) + 公路 (highway)→ 高速 公路 (freeway)
- Difficult for Word-based Approaches Popularly Used in Alphabetic Languages
 - serious out-of-vocabulary(OOV) problem

Word-based and Character-based Chinese

Language Modeling

- words are the primary building blocks of sentences
- more information may be added
- lexicon plays the key role
- flexible wording structure makes it difficult to have a good enough lexicon
- accurate word segmentation needed for training corpus
- serious "out-of-vocabulary(OOV)" problem in many cases
- all characters included as "mono-character words"

Character-based Language Modeling

- avoiding the difficult problem of flexible wording structure and undefined word boundaries
- relatively weak without word-level information
- higher order N-gram needed for good performance, which is relatively difficult to realize

Integration of Class-based/Word-based/Character-based Models

- word-based models are more precise for frequently used words
- back-off to class-based models for events with inadequate counts
- each single word is a class if frequent enough

Segment Pattern Lexicon for Chinese – An Example OpenCourseWare Approach

Segment Patterns Replacing the Words in the Lexicon

- segments of a few characters often appear together: one or a few words
- regardless of the flexible wording structure
- automatically extracted from the training corpus (or network information) statistically
- including all important patterns by minimizing the perplexity

Advantages

- bypassing the problem that the word is not well-defined
- new words or special phrases can be automatically included as long as they appear frequently in the corpus (or network information)
- can construct multiple lexicons for different task domains as long as the corpora are given(or available via the network)

Example Segment Patterns Extracted from Network News Outside of A Standard Lexicon

Patterns with 2 Characters

一套,他很,再往,在向,但從,苗市,記在深表,這篇,單就,無權,開低,蜂炮,暫不

Patterns with 3 Characters

一 今年初,反六輕,半年後,必要時,在七月次微米,卻只有,副主委,第五次,陳水扁,開發中

Patterns with 4 Characters

一大受影響,交易價格,在現階段,省民政廳,專責警力 通盤檢討,造成不少,進行了解,暫停通話,擴大臨檢

Word/Segment Pattern Segmentation Samples

***With Extracted Segment Pattern**

交通部 考慮 禁止 民眾 *開車* 時 使用 大哥大 已 委由 逢甲大學 研究中 預計 六月底 完成 至於 實施 時程 *因涉及* 交通 處罰 條例 *的修正* 必須 經立法院 三讀通過 交通部 無法確定 交通部 官員表示 世界 各國對 應否 立法 禁止 民眾 開車 時 打 大哥大 意見 相當 分岐

•With A Standard Lexicon

交通部 考慮 禁止 民眾 開 車 時 使用 大哥大 已委由逢甲大學研究中 預計 六月 底 完成 至於 實施 時 程 因 涉及 交通 處罰 條例 的 修正 必須 經 立法院 三讀通過 交通部 無法 確定 交通部 官員 表示 世界 各 國 對 應否 立法 禁止 民眾 開 車 時 打 大哥大 意見 相當 分岐

Percentage of Patterns outside of the Standard Lexicon:28%

版權聲明

頁碼	作品	版權標示	作者/來源
2	The computer is listening they tutor list sunny 電腦聽聲音 老天 時	BY NC SA	國立台灣大學電機工程學系 李琳山 教授。本作品採用創用 CC 「姓名標示 - 非商業性 - 相同方式分享 3.0 臺灣」許可協議。
4	Entropy and Perplexity P (x ₁) עריי איי איי איי איי איי איי איי איי איי	BY NC SA	國立台灣大學電機工程學系 李琳山 教授。本作品採用創用 CC 「姓名標示 - 非商業性 - 相同方式分享 3.0 臺灣」許可協議。
5	H = 10 bits	BY NC SA	國立台灣大學電機工程學系 李琳山 教授。本作品採用創用 CC 「姓名標示 - 非商業性 - 相同方式分享 3.0 臺灣」許可協議。
9 28	550 600 500 500 500 500 500 500	BY NC SA	國立台灣大學電機工程學系 李琳山 教授。本作品採用創用 CC 「姓名標示 - 非商業性 - 相同方式分享 3.0 臺灣」許可協議。

版權聲明

頁碼	作品	版權標示	作者/來源
13	Smoothing: Unsum Events The second	BY NC SA	國立台灣大學電機工程學系 李琳山 教授。本作品採用創用 CC 「姓名標示 - 非商業性 - 相同方式分享 3.0 臺灣」許可協議。
16		BY NC SA	國立台灣大學電機工程學系 李琳山 教授。本作品採用創用 CC 「姓名標示 - 非商業性 - 相同方式分享 3.0 臺灣」許可協議。
22	POS features (AL EX. (-1) Data driven Approach Frample Dog May May	BY NC SA	國立台灣大學電機工程學系 李琳山 教授。本作品採用創用 CC 「姓名標示 - 非商業性 - 相同方式分享 3.0 臺灣」許可協議。