實驗經濟學一:行為賽局論

Experimental Economics I: Behavioral Game Theory

第十一講:認證標籤賽局 Lecture 11:Signaling

授課教師:國立臺灣大學 經濟學系 王道一教授(Joseph Tao-yi Wang)

本課程指定教材: Colin E. Camerer, *Behavioral Game Theory: Experiments in Strategic Interaction*. New York: Russell Sage Foundation; New Jersey: Princeton UP, 2003.

【本著作除另有註明外,採取<u>創用 CC 「姓名標示-非商業性-相同方式分享」臺灣 3.0 版</u>授權釋出】

- What have we learned up to now?
 - Camerer (BGT 2003) report Game Theory Experiments (test theory & inspire new theory)
- 1. Mixed-strategy Nash Equilibrium (MSE)
- 2. Subgame Perfect Equilibrium (SPE)
- 3. Bayesian Nash Equilibrium (BNE): auction
- 4. Sequential Equilibrium (SE) [today]
- Why theory works well in some situations?

- Why theory works well in simple situations?
- 1. Learning to play Nash?
- 2. Limited strategic reasoning
 - Backward Induction fails!
- 3. Initial response (level-k reasoning)
- 4. Cannot detect deviations
- 5. Coordination & pre-game Communication

- Camerer (BGT 2003) purposely reported different classes of game theory experiments
- 1. MSE (Ch. 3)
- 2. SPE and dominant solvable games (Ch. 5)
- 3. Learning (Ch. 6)
- 4. Coordination (Ch. 7)
- 5. SE and Signaling and Reputation (Ch. 8)
- 6. Games of Social Preferences (Ch. 2)

- We also saw Risk and Time Preferences...
- What about Market Behavior? Applications?
- 1. Auction (auction chapter in EL)
- 2. Cheap Talk Games (and Lying)
- 3. Voting Games (special case of MSE!)
- 4. Bargaining Market Design
- 5. Field Experiments
- 6. Prediction Markets and Bubbles

What Makes a Signal Work?

- A Signal must be affordable by certain types of people
 - Cost < Benefit (if receivers decodes it)
- A signal must be too expensive for players of the wrong type to afford
 - Cost > Benefit (even if receivers decodes it)
- Separating Equilibrium: Those who buy and those who don't are of different types

What Makes a Signal Work?

- Separating Equilibrium consists of a circular argument:
 - Signal senders buy the signal anticipating receivers decode it
 - Receivers get assurance about sender types from the signal and act different with/without it
 - This is a self-fulfilling prophecy
- Spence (Dissertation 1974)

Screening Experiment

- 1. CHT Telecom has 2 cell phone plans:
 - Plan A: NT\$1 per minute
 - Plan B: NT\$168 for 300 minutes, NT\$1.5 beyond
- 2. Your monthly usage (based on card received):
 - Spades: 0-100 minutes
 - Hearts: 200-300 minutes
 - Diamonds: 400-500 minutes
 - Clubs: 600-700 minutes
- 3. Which plan would you choose? Why?

Signaling Experiment

- 1. Suppose you are in...
 - National Daiwan University: Graduates earn 35k
 - Private So-What University: Graduates earn 22k
- 2. In your senior year, you can choose to:
 - Take master entrance exam for National Daiwan University: Graduates earn 40k, but need to repay tuition/cram school loans 5k monthly
- 3. Would you choose apply for a master? Why or why not?

Applying for Economics Graduate School

An Example of Signaling

Questions

- What should I apply? MBA or Econ PhD?
- What's the most important factor if I apply?
- Are foreigners/females discriminated against?
- Is mathematics needed in graduate school?
- Is MA (at NTU) required before PhD?
- How should I prepare myself now?

What Program Should I Apply?

- MBA or Econ PhD?
- This depends on Your Career Interest
- However, MBA is not for newly graduates
 - MBA is designed for people who have worked for years and are heading for top management
- Teach undergraduate level Economics, but
 - 1. Tie it with actual working experience
 - 2. Socializing with other CEO-to-be's is a bonus

What Program Should I Apply?

- Econ PhD provides you the rigorous training to modern economic analysis techniques
- This is used by
 - Academics (Economics, Public Policy, Law,...)
 - Economics Consulting Firms
 - Public Policy Evaluation
 - Financial Companies (like Investment Banking)
 - International Organizations (APEC, IMF, etc.) OpenCours

Most Important Factor

- What is the Most Important Factor when I Apply for Graduate School?
- Petersons Guide surveyed both students & admission committee members (faculty)
- They find that both agree No.1 factor is:
 - Letter from someone the committee knows
- Why is this No.1?
- Credible Signaling!

Most Important Factor

- No.1:
 - Letter from someone the committee knows
- Who are the people committees know?
- What if I cannot find someone to write?
- Find Other Credible Signals!
 - GPA?
 - GRE or TOEFL?
 - Other Distinct Features such as AWA 5.0 or higher?

Discrimination and Gender

- Are Foreigners or Females Discriminated Against?
- Foreigners:
 - Different Programs have different policy
 - UCLA (8/35) vs. MIT (25/30)
- Women: Only 16% of Faculty are Female
 - Does the market favor women? Maybe...
 - Comparison: 33% Math Professors are Female

Is Mathematics Needed?

- Advice for Econ PhD Applicants:
 - Take a heavy dose of mathematics during undergraduate.
 Peterson's Guide
- So, the answer is generally yes.
 - There is a gap between undergrad & graduate
- But, the ability to find economic intuition behind the math is even more essential
 - My first year micro comp. experience...
- They need Bilingual People!

Is Mathematics Needed?

- What Kind of Math is Needed?
- Introduction to Real Analysis (aka Advanced Calculus) Score A or A+
 - The <u>thinking process</u> required for you to score A/A+ is what's important
- Linear Algebra Basic Tool for Econometrics
- Advance Statistical Inference ... Econometrics
- The more the better, but mastering these three is better than being a jack of all traits...

Is MA required before I enter PhD?

- No. Most Top-10 have only PhD programs
 - Chicago: Give you a master if you cannot finish
- But you may not be able to survive studying both math & economics in English...
- Hence, a MA might help since
 - MA classes are similar to PhD classes
 - You may not be sure if you want to go for PhD
- Condition on passing 1st year comp's, MA is unnecessary, but you may want to hedge...

How Should I Prepare Myself Now?

- Create Credible Signals!
- Such As:
- GPA 4.0, ranked 1/160
- Good References
- A Published Research Paper
- Take a Heavy Dose of Mathematics
- Take Graduate Level Courses in Economics
- Take Economics Courses Taught in English

What Makes a Signal Work?

- Exercise: Show which types of people can afford the following signals:
 - GPA 4.0, ranked 1/160
 - Good References
 - A Published Research Paper
 - Take a Heavy Dose of Mathematics
 - Take Graduate Level Courses in Economics
 - Take Economics Courses Taught in English
 - AWA 5.0+

Theory of Signaling

- Harsanyi (MS 1967-68)
 - Types: Privately observe a move of Nature
- Bayesian-Nash Equilibrium (simultaneous) or Perfect-Bayesian Equilibrium (sequential)
 - Separating Equilibrium
 - Pooling Equilibrium
 - Semi-pooling Equilibrium
- Refinements: Sequential, Intuitive, Divine, Universal Divine, Never-Weak-BR, Stable

- Brandts and Holt (AER 1992)
- Worker Types are H or L with (2/3, 1/3)
- Seeing own type, Workers can choose to S (skip) or I (invest in education)
- Seeing this action, Employer assign the worker to a D (dull) or C (challenging) job
- Employer payoffs are 125 if she assigns D to L types and C to H types

- Workers get 100 doing C and 20 doing D
- L types get additional 40 for taking action S
- H types get 40 if take action I, 20 if take S

	Action seeing S		Action seeing I	
	Cs	Ds	Cı	DI
Type L	140,75	60, 125	100,75	20, 125
Type H	120, 125	20 40, 75	140, 125	60,75

- Two Pooling Equilibria:
- Sequential Equilibrium
 - Both Types choose S, Employers assign C
 - Out-of-equilibrium Belief: choosing I means L
 - Hence, Employers assign D if they see I
- Intuitive Equilibrium
 - Both Types choose I, Employers assign C
 - Out-of-equilibrium Belief: choosing S means L
 - Hence, Employers assign D if they see S

Simple Signaling Game: Extensive Form

- Sequential Equilibrium (S|H,S|L),(D|I,C|S)
- Beliefs: $\Pr(H|I) \le p_1 = \frac{1}{2}, \Pr(H|S) = \frac{2}{3}$

(140,125) C 2Inves 1 Skip 2 C (120,125) (60,75) D
$$4^{\frac{1}{2}}$$
 H $\frac{2}{3}$ $\frac{2}{3}$ D (20,75)

 $(100,75) \quad C \geq \frac{1}{2} \quad L \geq \frac{1}{3} \quad C \quad (140,75)$

(20,125) D 2 Inves 1 Skip 2 D

Simple Signaling Game: Extensive Form

- Intuitive Equilibrium (I|H,I|L), C|I,D|S)
- Beliefs: $\Pr(H|I) = \frac{2}{3}, \Pr(H|S) \le p_1 = \frac{1}{2}$

(140,125) C 2Inves 1 Skip 2 C (120,125) (60,75) D
$$\frac{4}{3}$$
 H $\frac{2}{3} \le \frac{1}{2}$ D (20,75)

$$(100,75) \quad C \quad \frac{1}{3} \quad L \quad \frac{1}{3} \quad \geq \frac{1}{2} \quad C \quad (140,75)$$

	Message	e Type	Action Type		Equilibrium Predictions	
Periods	Ι H	I L	C I	D S	Intuit.	Seq.
1-4	100	25	100	74	100	0
5-8	100	58	100	100	100	0
9-12	100	75	98	60	100	0
Suggest Actions: C S, D I						
1-4	50	13	60	46	100	National Taiwan Universit
5-8	75	33	233	67	100	OpenCourseWar 臺大開放式課程

- Banks, Camerer and Porter (GEB 1994)
- Design 7 games, separating:
 - Nash vs. non-Nash
 - Sequential vs. Nash
 - Intuitive vs. Sequential
 - Divine vs. Intuitive
 - Universal Divine vs. Divine
 - NWBR vs. Universal Divine
 - Stable vs. NWBR

Table X, Banks, Camerer & Porter, GEB94'

Game	More Refined	Less Refined	Non-Nash	N
1 Nash	56% → 76%	_	44% → 24%	150
² Sequentia	61% → 71%	13% → 24%	26% → 5%	150
3 Intuitive	53% → 68%	13% → 4%	34% → 28%	180
4 Divine	28% → 38%	16% → 8%	56% → 54%	120
5 Universal Divine	31% → 27%	36% → 36%	33% → 37%	90
6 NWBR	30% → 15%	30% → 33%	40% → 52%	120
7 Stable	59% → 56%	13% → 7%	28% → 37%	300

- Results show that subjects do converge to the more refined equilibrium up to intuitive
- After that, subjects conform to neither
 - Except for possibly Stable vs. NWBR
- Is this a test of <u>refinements</u>, or a test of <u>equilibrium</u> <u>selection</u>?
- Exercise: Show how equilibria in Table 8.3 (BCP94') satisfy corresponding refinements

- In game 2-6, different types send different messages
 - No simple decision rule explains this
 - But weak dominance and 1 round IEDS hold
- Are people just level-1?
- Also, how does the convergence work?

- More studies on learning:
- Brands and Holt (IJGT 1993)
 - Subjects lead to play less refined equilibrium
 - Why? Initial random play produces history that supports the non-intuitive equilibrium
- Anderson and Camerer (ET 2000)
 - EWA yields δ =0.54 (0.05);
 - Does better than choice reinforcement (δ =0) and weighted fictitious play (δ =1)

Specialized Signaling Games

- Potters and van Winden (IJGT 1996)
 - Lobbying
- Cadsby, Frank & Maksimovic (RFS 1990)
 - Corporate Finance
- Cooper, Kagel, Lo and Gu (AER 1999)
 - Ratchet Effect
- Cooper, Garvin and Kagel (Rand/EJ 1997)
 - Belief Learning in Limit Pricing Signaling Games

Lobbying: Potters & van Winden (IJGT96)

- Lobby group is type t₁ or t₂ with (1-p, p)
- Lobby group can send a signal (cost c)
- Politician chooses action x₁ or x₂ (match type)

Tymo	No signal		Costly Signal	
Type	X_1	X_2	X_1	X_2
t ₁ (1-p)	0, b ₁	a ₁ , 0	-c, b ₁	a ₁ -c, 0
t ₂ (p)	0,0	a ₂ , b ₂	-c, 0	a ₂ -c, b ₂

Lobbying

- For $\beta \Rightarrow there are 2 pb_1$ equilibrium:
- Pooling: Lobby groups both don't send signal
- Politician ignores signal and chooses x₁
 - Intuitive, divine, but not universally divine
- Semi-pooling: type t₂ always send signal
- Politicians mix x₁, x₂ w/ (1-c/a₁, c/a₁) if signal
- type t₁ mixes by sending signal with prob. β
 - Universally divine

Lobbying: Pooling Equilibrium

- Equilibrium $(Not|t_1, Not|t_2), (x_1|Send, x_1|Not)$
- Beliefs: $Pr(t_2|Not) = p = Pr(t_2|Send)$

Lobbying: Semi-Pooling Equilibrium

Lobbying

Troatmo	Sig	gnal Freq. ((t_1, t_2)	X_2 Fre	eq. (no sig.	, sig)
Treatme nt	β	Actual	Pred.	c/a_1	Actual	Pred.
1	0.25	38, 76	25,100	0.25	2, 5	0,25
2(2c)	0.75	46,100	75,100	0.25	3, 79	0,25
2a(6c)	0.75	83,93	75,100	0.25	11,54	0,25
3	0.25	16, 85	25,100	0.75	0,53	0,75
4	0.75	22,83	75,100	0.75	5,80	0,75 National Taiwan University
Aves	0.25	27, 81	25,100	0.25	5, 46	OpenCourseWare 臺大開放式課程

Lobbying

- Supporting universally divine equilibrium
- Fictitious Play Learning:
 - Past frequency of x_2 after signal is $r(m)_{t-1}$
- Should signal if $r(m)_{t-1} a_1 c > 0$
 - Subjects signal 46% if >0, 28% if <0
 - Politicians choose x_2 77% if >0, 37% if <0
- Potters and van Winden (JEBO 2000)
 - Similar results; little difference between students and professionals

Corporate Finance

- Cadsby, Frank & Maksimovic (RFS 1990)
- Firms are either H or L with (50%, 50%)
 - Worth B_H, B_L if carry project
 - Worth A_H, A_L if pass
- Need capital I to finance the project
- Investors can put up I and get S shares
- Exercise: When will there be pooling, separating, and semi-separating equilibria?

Corporate Finance

- Example:
- L types worth 375/50 with/without project
- H types worth 625/200 with/without project
- Capital I = 300
- Separating equilibrium: S=0.80
- Pooling equilibrium: S=0.60
- Semi-pooling equilibrium: S=0.68
- Exercise: Show that these are equilibria!

Corporate Finance

- Cadsby et al. ran 10 sessions (Table 8.11)
- Results support equil. (pooling if multi.)
 - When unique pooling: all firms offer shares
 - When unique separating: Initially, both offer (pool), but H types learn not to offer (separate)
 - When multiple: Converge to pooling equilibrium
- Cadsby, Frank and Maksimovic (RFS 1998)
 - Add costly signals (see Table 8.12 for results)

Ratchet Effect

- Cooper, Kagel, Lo and Gu (AER 1999)
- Firms are either H or L with (50%, 50%)
- Choose output level 1-7
- Planner choose easy or tough target
 - Set easy if Pr(L | output) > 0.325
- Pooling Eq: L chooses 1 or 2; H pools with L
- Myopic K firms: Naively pick 5 (& get tough)
 - Exercise: Prove these with payoffs in Table 8.1 🚉 🚉 🕏 🕏 🕏

Ratchet Effect

- 70-90% L firms choose 2
- Most H firms choose 2 or 5
- Period 13-36: Convergence to pooling
- Big context effect only for Chinese manager
 - Provides language to folster learning from exp.
- Cooper, Garvin and Kagel (Rand/EJ 1997)

Reputation Formation

- Camerer and Weigelt (Econometrica 1988)
- 8 period trust game
- Borrower: normal (X) or nice (Y)
- (New) Lender each period: Lend or Don't
- Borrower chooses to Default or Repay
 - Normal types default; nice types repair

Reputation Formation

Lender	Borrower	Lender	Borrower Payoff		
Strategy	Strategy	Payoff	Normal	Nice (Y)	
Lend	Default	-100	150	0	
	Repay	40	60	60	
Don't	-	10	10	10	

Reputation Formation

- What does the equilibrium look like?
- Last Period: Lend if P_8 (nice) > $\tau = 0.79$
 - Normal borrowers default; nice ones repay
- Period 7:
 - Normal borrowers weigh between default now (and reveal) and default later

Conditional Frequency of Lending

R	ound	1	2	3	4	5	6	7	8
2 5	Predict	100	100	100	100	64	64	64	64
3-5	Actual								
	Predict	100	100	100	64	64	64	64	64
6-8	Actual								
0.10	Predict	100	100	100	64	64	64	64	64
9-10	Actual								

Conditional Frequency of Lending

R	ound	1	2	3	4	5	6	7	8
2 5	Predict	100	100	100	100	64	64	64	64
3-5	Actual	94	96	96	91	72	59	38*	67
6.0	Predict	100	100	100	64	64	64	64	64
6-8	Actual	96	99	100	95*	85*	72	58	47
0 10	Predict	100	100	100	64	64	64	64	64
9-10	Actual	93	92	83	70	63	72	77	33

Conditional Frequency of Repay (by X)

R	ound	1	2	3	4	5	6	7	8
2 5	Predict	100	100	100	81	65	59	44	0
3-5	Actual								
6-8	Predict	100	100	73	68	58	53	40	0
	Actual								
9-10	Predict	100	100	73	67	63	56	42	0
	Actual								

Conditional Frequency of Repay (by X)

R	ound	1	2	3	4	5	6	7	8
2 5	Predict	100	100	100	81	65	59	44	0
3-5	Actual	95	97	98	95*	86*	72	47	14
6.0	Predict	100	100	73	68	58	53	40	0
6-8	Actual	97	95	97*	92*	85*	70*	48	0
0 10	Predict	100	100	73	67	63	56	42	0
9-10	Actual	91	89	80	77	84*	79*	48	29

Follow-up Studies

- Neral and Ochs (Econometrica 1992)
 - Similar repeated trust games
- Jung, Kagel and Levin (Rand 1994)
 - Entry deterrence in chain-store paradox
- Camerer, Ho and Chong (JET 2002)
 - Sophisticated EWA (strategic teaching!)

Conclusion

- Cooper, Garvin and Kagel (EJ 1997)
 - "We do not suggest that game theory be abandoned, but rather as a descriptive model that it needs to incorporate more fully how people actually behave."
- Possible improvements:
- QRE, level-k or Cognitive Hierarchy
- Learning (EWA or belief learning)

頁碼	作品	版權標示	來源 / 作者
1-54		BY NC SA	國立臺灣大學 經濟學系 王道一 教授
23	Worker Types are H or L with (2/3, 1/3) Employer payoffs are 125 if she assigns D to L types and C to H types		J.Brandts and C.A. Holt, "An Experimental Tests of Equilibrium Dominance in Signaling Games," American Economic Journal, Vol.82, No.5, (1992), pp.1350-1365. 依據著作權法第 46 、 52 、 65 條合理使用
24	Action seeing S		J.Brandts and C.A. Holt, "An Experimental Tests of Equilibrium Dominance in Signaling Games," American Economic Journal, Vol.82, No.5, (1992), pp.1353. 依據著作權法第 46 、 52 、 65 條合理使用
26, 27	(100,75) C L 1/3 C (140,75) (20,125) D 2 Invest 1 Skip 2 D (60,125)		J.Brandts and C.A. Holt, "An Experimental Tests of Equilibrium Dominance in Signaling Games," American Economic Journal, Vol.82, No.5, (1992), pp.1353. 依據著作權法第 46 、 52 、 65 條合理使用

頁碼	作品	版權標示	來源 / 作者
28	Message Type Action Type Equilibrium Predictions Periods I H I L C I D S Intuit. Seq. 1-4 100 25 100 74 100 0 5-8 100 58 100 100 100 0 9-12 100 75 98 60 100 0 Suggest Actions: C S, D I 1-4 50 13 60 46 100 0 5-8 75 33 33 67 100 0		Colin E. Camerer, <i>Behavioral Game Theory: Experiments in Strategic Interaction.</i> New York: Russell Sage Foundation; New Jersey: Princeton UP, 2003. pp.414. 依據著作權法第 46 、 52 、 65 條合理使用
30	1 Nash 56% → 76% - 44% → 24% 150 2 Sequential 61% → 71% 13% → 24% 26% → 5% 150 3 Intuitive 53% → 68% 13% → 4% 34% → 28% 180 4 Divine 28% → 38% 16% → 8% 56% → 54% 120 5 Divine 31% → 27% 36% → 36% 33% → 37% 90 6 NVBR 30% → 15% 30% → 33% 40% → 52% 120 7 Stable 59% → 56% 13% → 7% 28% → 37% 300		J.Banks, C.Camerer, and D. Porter, "An Experimental Analysis of Nash Refinements in Signaling Games," Games and Economic Behavior, vol.6, pp.15. 依據著作權法第 46 、 52 、 65 條合理使用
33	Subjects lead to play less refined equilibrium Initial random play produces history that supports the non-intuitive equilibrium		J.Brandts and C.A. Holt, "Adjustment Patterns and Equilibrium Selection in Experimental Signaling Games," International Journal of Game Theory, Vol.22, (1993), 279-302. 依據著作權法第 46 、 52 、 65 條合理使用
	EWA yields δ=0.54 (0.05);		C.M.Anderson and C. Camerer, "Experience-Weighted

頁碼	作品	版權標示	來源 / 作者
35			J.Potters and F. van Winden, "Comparative Statics of a Signaling Game: an Experimental Study," International Journal of Game Theory, Vol.25, (1996,) pp.331. 依據著作權法第 46 、 52 、 65 條合理使用
37、38	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		J.Potters and F. van Winden, "Comparative Statics of a Signaling Game: an Experimental Study," International Journal of Game Theory, Vol.25, (1996,) pp.331-335. 依據著作權法第 46 、 52 、 65 條合理使用
39	1 0.25 38, 76 25,100 0.25 2, 5 0,25 2(2c) 0.75 46,100 75,100 0.25 3,79 0,25 2a(6c) 0.75 83, 93 75,100 0.25 11,54 0,25 3 0.25 16,85 25,100 0.75 0.53 0,75 4 0.75 22,83 75,100 0.75 5,80 0,75 0.25 27,81 25,100 0.25 5,46 0,25 Aver. 0.75 50,92 75,100 0.75 2,66 0,75		J.Potters and F. van Winden, "Comparative Statics of a Signaling Game: an Experimental Study," International Journal of Game Theory, Vol.25, (1996,) pp.342. 依據著作權法第 46 、 52 、 65 條合理使用
46	8 period trust game Borrower: normal (X) or nice (Y) Normal types default:		Colin Camerer and Keith Weigelt, "Experimental Test of a Sequential Equilibrium Reputation Model," Econometrica, Vol.56, No.1, pp.1-5. 依據整作權法第 46 、 52 、 65 條合理使用

頁碼	作品	版權標示	來源 / 作者
47	Lender Strategy Borrower Strategy Lender Payoff Borrower Payoff Lend Default -100 150 0 Repay 40 60 60 Don't - 10 10 10		Colin Camerer and Keith Weigelt, "Experimental Test of a Sequential Equilibrium Reputation Model," Econometrica, Vol. 56, No.1, pp.4. 依據著作權法第 46 、 52 、 65 條合理使用
49、50	Round		Colin Camerer and Keith Weigelt, "Experimental Test of a Sequential Equilibrium Reputation Model," Econometrica, Vol. 56, No.1, pp.16. 依據著作權法第 46 、 52 、 65 條合理使用
51, 52	3-5 Predict 100 100 100 81 65 59 44 0		Colin Camerer and Keith Weigelt, "Experimental Test of a Sequential Equilibrium Reputation Model," Econometrica, Vol. 56, No.1, pp.14 依據著作權法第 46 、 52 、 65 條合理使用
	We do not suggest that game theory be abandoned, but rather as a descriptive model		David J. Cooper, Susan Garvin and John H. Kagel," Adaptive learning vs. equilibrium refinements in an entry limit pricing game." Economic Journal, Vol. 107, Issue 442